دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: نویسندگان: Jyotishkumar Parameswaranpillai, Poushali Das, Sayan Ganguly سری: ISBN (شابک) : 1032210508, 9781032210506 ناشر: CRC Press سال نشر: 2024 تعداد صفحات: 466 [467] زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 31 Mb
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Quantum Dots and Polymer Nanocomposites: Synthesis, Chemistry, and Applications به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب نقاط کوانتومی و نانوکامپوزیتهای پلیمری: سنتز، شیمی و کاربردها نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
نقاط کوانتومی و نانوکامپوزیتهای پلیمری: سنتز، شیمی و کاربردها خواص، ساخت، و کاربران فعلی و بالقوه کامپوزیتهای پلیمری مبتنی بر نقاط کوانتومی را بررسی میکند. با بررسی سنتز، پردازش، طبقهبندی، مشخصهبندی و کاربرد نقاط کوانتومی، بهروزرسانیهای بسیار مورد نیاز را در مورد اجزای ضروری نانوکامپوزیتهای پلیمری ارائه میکند.
موضوعات شامل فناوریهای ساخت مدرن، پردازش، تشکیل نانوساختار و مکانیسمهای تقویت است. این کتاب همچنین زیست سازگاری، تناسب و اثرات سمی نانوکامپوزیتهای پلیمری مبتنی بر نقاط کوانتومی را پوشش میدهد. کاربردهایی مانند زیست پزشکی، کاهش آلودگی، حسگرها و کاتالیزور، و همچنین فرصتها و جهتگیریهای تحقیقاتی آینده مورد بررسی قرار میگیرند. این کتاب ویرایش شده به عنوان یک کتاب مرجع یک مرحله ای برای محققان، دانشگاهیان، دانشجویان پیشرفته و دانشمندانی که در حال مطالعه ترکیبات اپوکسی هستند عمل می کند.
در میان دانشمندان مواد، فنآوران پلیمر، نانوتکنولوژیستها، مهندسان شیمی، فیزیکدانان (اپتیک، پلاسمونیک)، شیمیدانان، و مهندسان مکانیک، مورد توجه قرار خواهد گرفت.
Quantum Dots and Polymer Nanocomposites: Synthesis, Chemistry, and Applications reviews the properties, fabrication, and current and potential users of quantum dots-based polymer composites. It offers a much-needed update on the essential components of polymer nanocomposites by exploring the synthesis, processing, classification, characterisation, and applications of quantum dots.
Topics include modern fabrication technologies, processing, nanostructure formation, and the mechanisms of reinforcement. This book also covers biocompatibility, suitability, and toxic effects of quantum dots-based polymer nanocomposites. Applications such as biomedical, pollution mitigation, sensors, and catalysis are explored, as are opportunities and future research directions. This edited book acts as a one-stop reference book for researchers, academics, advanced students, and scientists studying epoxy blends.
It will be of interest to materials scientists, polymer technologists, nanotechnologists, chemical engineers, physicists (optics, plasmonics), chemists, and mechanical engineers, among others.
Cover Half Title Title Page Copyright Page Contents Editor Biographies Contributors 1. Introduction to Quantum Dots and Their Polymer Composites 1.1 Introduction 1.2 Synthesis Overview of Quantum Dots 1.3 Optical Properties of QDs 1.4 Upconversion Optical Characteristics 1.5 Polymer-Based Bioactivation of QDs 1.6 Applications of QD-Polymer Composites 1.6.1 Biomedical Area 1.7 Environmental Pollution Remediation Area 1.8 Summary References 2. What Are Quantum Dots? 2.1 Introduction 2.2 General Properties of Quantum Dots 2.3 Characteristics of Quantum Dots 2.4 Types of Quantum Dots 2.4.1 Core-Type QDs 2.4.2 Core-Shell QDs 2.4.3 Alloyed QDs 2.4.4 Doped Quantum Dots 2.5 Methodology for Developing Quantum Dots 2.5.1 Stranski-Krastanow Growth 2.5.2 Nanoscale Patterning 2.5.3 Colloidal Nanosynthesis 2.6 Optoelectronic Properties of Quantum Dots 2.7 Application of Quantum Dots 2.7.1 Optoelectronic Devices 2.7.2 Quantum Computing 2.7.3 Biological and Chemical Applications 2.7.4 QDs in Memory Applications 2.8 Summary Acknowledgments References 3. Synthesis of Quantum Dots 3.1 Introduction 3.2 Physical Strategy 3.3 Chemical Strategy 3.3.1 Colloidal Quantum Dot Synthesis via Micellar Synthesis 3.3.2 High-Temperature Injection Organometallic Synthesis of QDs 3.3.3 Organometallic Synthesis of QDs by Noninjection Method 3.3.4 Synthesis of Hydrophilic QDs 3.4 Preparation of QDs Using Biosynthetic Approach 3.5 Scaling-Up Aspect of the QD Synthesis 3.5.1 Microreactor or Microfluidic Synthesis of QDs 3.5.2 Synthesis of QDs by Rotating Packed Bed Reactor 3.5.3 Synthesis of QDs Using Spray-Based Technique 3.6 Conclusion and Prospect Acknowledgments Conflict of Interest References 4. Optical Properties of Quantum Dots 4.1 Introduction 4.2 Approaches for Tuning the Optical Characteristics 4.2.1 Regulating the Intrinsic Characteristics of QDs 4.2.2 Modulation of the Surface 4.2.3 Doping Methods 4.3 Optical Properties 4.4 Photostability of Quantum Dots 4.5 Current Theories for PL Mechanisms 4.5.1 Recent Developments in Understanding Photoluminescence 4.6 Conclusion and Future Perspectives References 5. Surface Properties of Quantum Dots 5.1 Introduction 5.2 Surface Ligands 5.2.1 Organic Ligands 5.2.2 Inorganic Ligands 5.3 Surface Modification of QDs 5.4 Surface Modification Strategies to Improve Solubilization and Stability of the QDs 5.4.1 Solubilization by Ligand Exchange 5.4.2 Solubilization by Hydrophobic Interaction 5.4.3 Silica Encapsulation 5.5 Characterization of QD Surfaces 5.6 Conclusions Acknowledgments References 6. Impact of Doping on Efficiency of Quantum Dots 6.1 Introduction 6.2 Methods of Preparation 6.2.1 Top-Down Approach 6.2.2 Bottom-Up Approach 6.3 Significant Applications of Quantum Dots 6.3.1 Plant Bioimaging 6.3.2 Animal Bioimaging 6.3.3 Prokaryote Bioimaging 6.3.4 Tracking of Particles 6.3.5 In situ Imaging 6.3.6 Drug Delivery 6.3.7 Detection of Various Cancers 6.3.8 Imaging and Sensing of Infectious Diseases 6.4 Doping 6.5 Significance of Doping into Quantum Dots 6.5.1 Electrochemical Doping of Quantum Dots 6.5.2 n-type Doping by Lithium Ion Intercalation 6.5.3 Elemental Doping of Graphene QDs 6.5.4 Doping on InAs/GaAs QD Solar Cells 6.5.5 Effects of Dopants (N and P) on the Size and Quantum Yield 6.5.6 Effect of Doping on the Structural and Optical Properties 6.5.7 Effect of Doping on the Electrons and Holes 6.5.8 Silver-Doped PbSe Quantum Dots 6.5.9 Effect of Copper Doping on Electronic Structure 6.5.10 Effect of Heteroatom-Doped Carbon Quantum Dots 6.5.11 Effect of Mg and Cu Doping on ZnS Quantum Dots 6.5.12 Effect of Mn Doping on CdS Quantum Dot-Sensitized Solar Cells 6.5.13 Effect of Si Doping on InAs/GaAs Quantum Dot Solar Cells 6.5.14 Effect of Silicon Delta-Doping 6.5.15 Diffusion Doping in Quantum Dots 6.5.16 Significance of p-Doping for Quantum Dot Laser 6.5.17 Impact of Modulation p-Doping in InAs Quantum Dot Lasers 6.5.18 Mn:Cu Co-Doped CdS Nanocrystals 6.6 Conclusion Conflict of Interest References 7. Fabrication Methods of Quantum Dots-Polymer Composites 7.1 Introduction 7.2 Quantum Dots 7.3 QD Polymer Nanocomposites 7.4 Fabrication Techniques for QD Polymer Nanocomposites 7.4.1 Blending Methods 7.4.1.1 Melt Blending Method 7.4.1.2 Solution Blending Method 7.4.2 Chemical Grafting Method 7.4.3 In situ Polymerization Method 7.4.4 Layer-by-Layer Method 7.4.5 Microwave Methods 7.5 Challenges in QD-Polymer Nanocomposite Formation 7.6 Conclusions Acknowledgments References 8. Reinforcement Mechanisms of Quantum Dot-Polymer Composites 8.1 Introduction 8.2 Benefits and Complexities of Polymer-Based Nanocomposites 8.3 Dispersions and Agglomeration of Nanofillers in Polymer Matrices 8.4 Various Nanofillers for Polymer Matrices 8.4.1 Shape Dependency Reinforcement 8.4.2 Nanofiller Chemistry 8.4.3 Nanofiller Size and Shape 8.5 Carbon Dots: Features and Surface Properties 8.6 Quantum Dots 8.7 Polymer Dots and Their Hybrids 8.8 Reinforcement Behaviors of Fillers into Polymer Matrices 8.9 Summary and Outlook References 9. Quantum Dots Modified Thermoplastic and Thermosetting Plastic Composites 9.1 Introduction 9.2 Polymer Nanocomposites 9.3 Typical Polymers in QDs/Polymer Composites 9.4 Quantum Dots 9.5 Synthesis Methods of Quantum Dots 9.5.1 Top-Down Approach 9.5.1.1 Chemical/Electrochemical Oxidation 9.5.1.2 Arc Discharge 9.5.1.3 Laser Ablation 9.5.2 Bottom-Up Approach (Self-Assembly) 9.5.2.1 Wet Chemical Methods 9.5.2.1.1 Hydrothermal/Solvothermal Method 9.5.2.1.2 Microwave-Assisted Pyrolysis 9.5.2.1.3 Ultrasonication 9.5.3 Vapor Phase Methods 9.6 Preparation of QDs/Polymer Composites 9.6.1 Physical Mixing 9.6.2 Chemical Grafting 9.6.3 In situ Polymerization Method 9.7 Dispersion of QDs in Polymer Matrix 9.8 Applications of QD/Polymer Composites 9.9 Conclusion and Future Perspectives References 10. Quantum Dots-Rubber Composites 10.1 Introduction 10.2 Background and Challenges 10.3 Surface Modification of QDs by Polymer Phases 10.4 QDs in Elastomer Matrices 10.5 Summary References 11. Biomedical Applications of Quantum Dot-Polymer Composites 11.1 Introduction 11.2 Chemical Structure of CQDs 11.3 Preparation Methods of CQDs 11.3.1 Top-Down Route 11.3.2 Bottom-Up Route 11.4 Strategies to Change Biodistribution and Toxicity 11.4.1 Biodistribution 11.4.2 Toxicity 11.5 Applications of Carbon-Based Quantum Dots (CQDs) 11.5.1 CQDs in Diagnosis 11.5.2 CQDs with Dual Functions (Phototherapy and Radiotherapy) 11.5.3 Role of CQDs in the Drug Delivery Field 11.5.4 Gene Therapy 11.5.5 Biosensing and Immunosensors 11.5.6 Bone Tissue Enginnering 11.5.7 Use in the Environment 11.6 Conclusions and Prospects for the Future References 12. Quantum Dot-Polymer Composites as Sensors 12.1 Carbon Dot/Polymer Composite-Based Sensors 12.1.1 Optical Properties of Carbon Dots/Polymer Composites 12.1.2 Sensing Application of Carbon Dots/Polymer Composites 12.1.3 Chemical Sensors 12.1.4 Biological Sensors 12.1.5 Physical Sensors 12.2 Graphene Quantum Dot/Polymer Composite-Based Sensors 12.2.1 Heavy Metal Ion Sensing Using Graphene Quantum Dot/Polymer Composite-Based Sensors 12.2.2 Sensing Disease Biomarkers Using Graphene Quantum Dot/Polymer Composite-Based Sensors 12.2.3 Sensing Drugs and Contaminants Using Graphene Quantum Dot/Polymer Composite-Based Sensors 12.3 Perovskite Quantum Dot/Polymer Composite-Based Sensors 12.3.1 Sensing of Organic Dye Using Perovskite Quantum Dot/Polymer Composite-Based Sensors 12.3.2 Sensing of Organophosphorous Pesticide Using Perovskite Quantum Dot/Polymer Composite-Based Sensors 12.3.3 Detection of UV Radiation Using Perovskite Quantum Dot/Polymer Composites 12.3.4 Sensing of Chloride/Iodide Ion Using Perovskite Quantum Dot/Polymer Composite-Based Sensors 12.3.5 Biomolecule Sensing Using Perovskite Quantum Dot/Polymer Composite-Based Sensors 12.3.6 Development of pH Sensor Using Perovskite Quantum Dot/Polymer Composites 12.4 Summary and Future Perspectives of Quantum Dot/Polymer Composites as Sensors Acknowledgments Declaration References 13. Quantum Dot-Polymer Composites in Light-Emitting Diode Applications 13.1 Introduction 13.2 Evolution of Quantum Dot-Based Light-Emitting Diodes 13.3 Role of Quantum Dots in LEDs 13.4 Perovskite Quantum Dots 13.5 PbS Quantum Dots 13.6 Challenges and Limitations in QD-Polymer Composites in LED Applications 13.6.1 Challenges 13.6.2 Compatibility of QDs with Polymers 13.6.3 Reliability and Lifetime of QD-LEDs 13.6.4 Combination of QDs with LEDs 13.6.5 Limitations 13.7 Recent Progress in QD-LEDs 13.7.1 Compatibility of QDs and Polymer Matrix 13.7.2 Modification of the QDs Surface Chemistry 13.7.3 Incorporation of QDs into Polymer Nanomaterials 13.7.4 Embedding QDs into Polymer Microspheres 13.7.5 Optimization of QD-LED Spectra 13.7.6 Color Matching Functions and Chromaticity Diagrams 13.7.7 Color Gamut 13.7.8 CRI and Color Quality Scale (CQS) 13.7.9 Luminous Efficacy of Optical Radiation (LER) 13.7.10 Increasing the Consistency and Lifetime of QD-LEDs 13.7.11 Applications of Quantum Dots 13.8 Display Devices 13.8.1 Liquid Crystal Display (LCD) Backlighting 13.8.2 Phosphors 13.8.3 Solar Cell-Based Light Source 13.8.4 Photodetectors 13.8.5 Biomedical Imaging 13.8.6 Light Emitting Diodes (LEDs) 13.8.7 Future Perceptive 13.9 Conclusion References 14. Quantum Dot-Polymer Composites in Catalytic Applications 14.1 Introduction 14.2 Preparation Method of Quantum Dot-Polymer Composites 14.2.1 Preparation of QDs/Polymer Composites by Blending Techniques 14.2.2 In situ Preparation of Polymers in the Presence of QDs 14.2.3 One-Step Fabrication of QDs and Polymer Composites 14.3 Structures and Properties of Quantum Dot-Polymer Composites 14.4 Polymer Quantum Dot Composites 14.4.1 QDs and Thermoplastic Polymer Composites 14.4.2 QDs and Thermosetting Polymer Composites 14.5 Catalytic Activity of Quantum Dot-Polymer Composites 14.6 Future Scope and Challenges 14.7 Outlook 14.8 Abbreviations References 15. Synthesis and Applications of Polymer-Quantum Dots Gels 15.1 Introduction 15.2 Polymer Gels 15.3 Quantum Dots 15.4 Properties of Polymer-Quantum Dot Gel Hybrids 15.4.1 Size Distribution of PNIPAM-QDs Hybrids Using Transmission Electron Microscope 15.4.2 Temperature and pH-Dependent Swelling Behavior of Hybrid Microgels 15.4.3 pH-Dependent Photoluminescence Properties 15.4.4 Temperature-Dependent Photoluminescence Studies 15.5 Synthesis of Polymer-Quantum Dots Gel Hybrids 15.5.1 In situ Synthesis of Polymer-QDs Gel Hybrids 15.5.2 Synthesis of Polymer-QDs Gels by Loading of Preformed QDs onto Polymer Gels 15.5.3 Ligand Exchange between QDs and Polymer Gels 15.6 Applications of Polymer-Quantum Dots Gel Hybrids 15.7 Conclusion and Outlooks References 16. Biocompatibility of Polymer-Quantum Dot Composite 16.1 Introduction 16.2 Classification of Polymers 16.3 Different Tests of Biocompatibility of Polymer Composites 16.3.1 Cytotoxicity 16.3.1.1 In-Vitro 16.3.1.2 In-Vivo 16.4 Biodegradability Test of Polymer Materials 16.4.1 Soil Burial and Compost Conditions 16.4.2 Dip-Hanging Method 16.4.3 Anaerobic Biodegradation of Bioplastics 16.5 Quantum Dots 16.5.1 Methods of Coating the Quantum Dots 16.5.1.1 Encapsulation 16.5.1.2 Ligand Exchange 16.5.1.3 Bioconjugation 16.6 Biocompatible Polymer-Quantum Dot Composite Materials 16.6.1 Bovine Serum Albumin (BSA) Protein 16.6.2 Peptides 16.6.3 Gelatin 16.6.4 Cellulose 16.6.5 Chitosan 16.6.6 Alginate 16.6.7 Polyethylene Glycol (PEG) 16.6.8 PLA 16.6.9 Silk 16.6.10 Polyvinyl Alcohol (PVA) 16.7 Conclusion References 17. Photoluminescence Property of Quantum Dots in Polymer Matrices 17.1 Introduction 17.2 Carbon Quantum Dots: A New Class of Carbonaceous Nanomaterial 17.3 Origin of Photoluminescence in CQDs 17.4 Fluorescence Properties of CQDs 17.5 Fluorescence Emissions of Surface Defect-Derived Origins 17.6 Surface Passivation and Quantum Yield 17.7 Polymers as Support for CQDs 17.8 Conclusion References 18. Environmental Impact of Quantum Dots and Their Polymer Composites 18.1 Introduction 18.2 Physicochemical Properties of QDs 18.3 Mechanism and Chemistry Behind Quantum Dot-Based Pesticide Detection 18.4 Effect of Doping of QDs for Pesticide Recognition 18.5 Silica QD Composites for Pesticide Detection 18.6 Polymer/Supramolecular Surface Decorated QDs for Pesticide Detection 18.7 Surface Engineering of QDs by Molecularly Imprinted Polymers (MIPs) 18.8 QD-Embedded Thin-Film Membranes 18.9 Toxicity of QDs 18.10 Exposure Pathways 18.11 Cytotoxicity of QDs in Various Organs 18.12 Conclusions and Future Perspective References 19. Quantum Dots and Their Polymer Composites for Supercapacitor Applications 19.1 Introduction 19.2 Varieties of Nanomaterials and Importance of Quantum Dots as Electrode Material 19.3 Synthesis of Quantum Dots, Polymers, and Nanocomposites 19.3.1 Solvothermal/Hydrothermal Process 19.3.2 Microwave Synthesis 19.3.3 Electrochemical Process 19.3.4 Direct Chemical Cutting Process 19.3.5 Hummers Method 19.4 Quantum Dots and Polymer Composites in Supercapacitor Applications 19.5 Discussing Pros and Cons and Future Scope 19.6 Conclusion References 20. Polymer Composites: Processing, Safety, and Disposal 20.1 Introduction 20.2 Common Biodegradable Polymers Used Biomedical Applications: Processing and Applications 20.2.1 Plant Polymers 20.2.1.1 Plant Polysaccharides and Their Bio-Nanocomposites 20.2.1.2 Plant Protein and Their Composites 20.2.1.3 Plant-Derived Lipids and Their Composites 20.2.2 Animal Polymers 20.2.2.1 Animal Polysaccharides and Their Nanocomposites 20.2.2.1.1 Chitosan 20.2.2.2 Animal Protein and Their Nanocomposites 20.2.2.2.1 Gelatin and Nanocomposites 20.2.2.2.2 Collagen and Nanocomposites 20.2.2.2.3 Albumin and Nanocomposites 20.2.2.2.4 Silk Fibroin and Nanocomposites 20.2.2.3 Animal Lipid and Their Nanocomposites 20.2.3 Microbial Polymers 20.3 Safety Issues of Polymer Nanocomposites 20.4 Disposal/Degradation 20.5 Future Perspective and Concluding Remarks References Index