دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: [1st ed. 2022]
نویسندگان: Eduardo Reck Miranda (editor)
سری:
ISBN (شابک) : 3030955370, 9783030955373
ناشر: Springer
سال نشر: 2022
تعداد صفحات: 376
زبان: English
فرمت فایل : EPUB (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 51 Mb
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Quantum Computing in the Arts and Humanities: An Introduction to Core Concepts, Theory and Applications به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب محاسبات کوانتومی در هنر و علوم انسانی: مقدمه ای بر مفاهیم اصلی، نظریه و کاربردها نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
کامپیوترها برای عملکرد جامعه ما ضروری هستند. با وجود قدرت باورنکردنی رایانههای موجود، فناوری محاسبات فراتر از مدلهای مرسوم امروزی پیشرفت میکند. محاسبات کوانتومی (QC) به عنوان یک فناوری مخرب امیدوارکننده ظاهر شده است. QC بر اساس اصول مکانیک کوانتومی ساخته شده است. QC میتواند الگوریتمهایی را اجرا کند که اجرای آنها بر روی رایانههای دیجیتال ساده نیست. سیستمهای QC برای کشف مواد و داروهای جدید و روشهای بهبودیافته برای رمزگذاری اطلاعات برای ارتباطات ایمن از طریق اینترنت در حال توسعه هستند. استفادههای جدید بیسابقهای برای این فناوری احتمالاً از تحقیقات جاری پدیدار خواهد شد.
توسعه دیجیتال مرسوم فناوری محاسباتی برای هنر و علوم انسانی از دهه 1950 همزمان با تکامل رایانه ها در حال پیشرفت بوده است. امروزه کامپیوتر برای هنر و علوم انسانی کاملا ضروری است. بنابراین، پیشرفتهای آینده در QC به احتمال زیاد بر روشی که هنرمندان خلق و اجرا میکنند و نحوه انجام تحقیقات در علوم انسانی تأثیر میگذارد.
/span>
این کتاب مجموعهای جامع از فصلهای پیشگامان تحقیقات میانرشتهای نوظهور در تقاطع محاسبات کوانتومی، و هنر و علوم انسانی، از فلسفه و علوم اجتماعی تا هنرهای تجسمی و موسیقی را ارائه میکند. .
پروفسور ادواردو رک میراندا آهنگساز و استاد موسیقی
کامپیوتر در دانشگاه پلیموث بریتانیا است، جایی که او مدیر مرکز
بین رشتهای تحقیقات موسیقی کامپیوتری (ICCMR) است. انتشارات
قبلی او شامل عناوین Springer Handbook of
Artificial Intelligence for
Music، راهنمای محاسبات غیر
متعارف برای موسیقی، <
/span>راهنمای رابط موسیقی مغز و
رایانه و Gراهنمای محاسبات برای
اجرای موسیقی بیانگر.
Computers are essential for the functioning of our society. Despite the incredible power of existing computers, computing technology is progressing beyond today’s conventional models. Quantum Computing (QC) is surfacing as a promising disruptive technology. QC is built on the principles of quantum mechanics. QC can run algorithms that are not trivial to run on digital computers. QC systems are being developed for the discovery of new materials and drugs and improved methods for encoding information for secure communication over the Internet. Unprecedented new uses for this technology are bound to emerge from ongoing research.
The development of conventional digital computing technology for the arts and humanities has been progressing in tandem with the evolution of computers since the 1950s. Today, computers are absolutely essential for the arts and humanities. Therefore, future developments in QC are most likely to impact on the way in which artists will create and perform, and how research in the humanities will be conducted.
This book presents a comprehensive collection of chapters by pioneers of emerging interdisciplinary research at the crossroads of quantum computing, and the arts and humanities, from philosophy and social sciences to visual arts and music.
Prof. Eduardo Reck Miranda is a composer and a
professor in Computer Music at Plymouth University, UK, where
he is a director of the Interdisciplinary Centre for Computer
Music Research (ICCMR). His previous publications include the
Springer titles Handbook of Artificial
Intelligence for Music, Guide
to Unconventional Computing for
Music, Guide to Brain-Computer
Music Interfacing and Guide to
Computing for Expressive Music
Performance.
Preface Contents From Digital Humanities to Quantum Humanities: Potentials and Applications 1 Introduction 2 Towards Quantum Humanities 2.1 Digital Humanities 2.2 Potential Benefits of Quantum Humanities 2.3 Current Challenges of Quantum Humanities 3 Quantum Humanities Use Case: Project MUSE 3.1 MUSE Ontology 3.2 MUSE Film Corpus 3.3 MUSE Data Set 3.4 MUSE Data Analysis 3.5 MUSE Costume Patterns 4 Analysing Data 4.1 Data Analysis Pipeline 4.2 Categorical Data 4.3 Creating Pattern Languages Based on Data Analysis 5 Artificial Neural Networks 5.1 Neurons 5.2 Neural Networks 5.3 Perceptrons 5.4 Restricted Boltzmann Machines 5.5 Autoencoders 6 Variational Hybrid Quantum–Classical Algorithms 6.1 The Main Idea 6.2 Maximum Cut: A Combinatorial Optimization Problem 6.3 QAOA 6.4 Computing Maximum Cuts via Eigenvalues 6.5 VQE 7 QHAna: A Quantum Humanities Analysis Tool 7.1 Support the Identification of (Costume) Patterns 7.2 Comparing Classical and Quantum Machine Learning Algorithms 7.3 Improve the Understanding of the Benefits of Quantum Computing 7.4 Integration of Heterogeneous Tools 7.5 Provide Easy Access to Quantum Computing 8 Conclusion and Outlook References Quantum Computing and Cognitive Simulation 1 Introduction 1.1 Mathematical Notation 2 Cognitive Phenomena 2.1 Asymmetry of Similarity Judgements 2.2 Diagnosticity 2.3 Conjunction and Disjunction Fallacies 2.4 Question Order Models 2.5 The `Sure Thing' Principle 2.6 Categorization 2.7 Negation 3 Quantum Models 3.1 Overview of Quantum Models in Psychology 3.2 Similarity Judgements 3.3 Diagnosticity 3.4 Conjunction Fallacy and Over/Underextension 3.5 Violation of the `Sure Thing' Principle 3.6 Question Order Models and Contextuality 3.7 Contextuality 3.8 Concept Combination and Overextension 3.9 Modelling of Over- and Underextension in Psychological Data 3.10 Cognitive and Neuronal Structures 3.11 Tensor Product Representations 4 Concluding Remarks 4.1 Potential for Quantum Computing to Contribute to Cognitive Science References The Philosophy of Quantum Computing 1 Introduction 2 Fundamental Concepts 2.1 Classical States 2.2 Classical Computers 2.3 Physical Perspectives on Computer Science 2.4 Quantum States and Operations 3 Quantum Computation and Parallel Universes 4 Quantum Computation and Entanglement 5 The Gottesman–Knill Theorem 6 Computer Simulations and Locally Causal Models of Quantum Phenomena 7 Computational Perspectives on Physics 8 Concluding Remarks References Quantum-Like Cognition and Rationality: Biological and Artificial Intelligence Systems 1 Introduction 2 Brief Comparison: Classical Versus Quantum Probability 3 Classical (Bayesian) Versus Quantum (Generally Non-Bayesian) Rationality 4 Advantages, Disadvantages, and Roots of Quantum Rationality 4.1 Liberalization of Decision-Making 4.2 Dysfunctional Disagreement and Information Overload 4.3 Social Laser 5 Classical Versus Quantum Approach to the Problem of Agreement on Disagree 6 Common Knowledge: Illustrative Examples 7 Kolmogorov's Model of Classical Probability Theory 8 Classical Formalization of Common Knowledge and Aumann Theorem 8.1 States of the World 8.2 Agents' Information Representations 8.3 Common Prior 8.4 CP-Formalization of the Notion of Common Knowledge 8.5 Aumann Theorem 9 Basics of Quantum Formalism 9.1 States 9.2 Observables, Born Rule for Probability, and Projection Postulate 9.3 Quantum Logic 10 Quantum Formalization of Common Knowledge and Aumann Theorem with Interference Term 10.1 Quantum States of the World 10.2 Agents' Quantum Information Representations 10.3 Quantum Way of Common Knowledge Formalization 10.4 Quantum Version of Aumann's Theorem 11 Concluding Discussion References Quantum Music, Quantum Arts and Their Perception 1 Realm of Quantum Expressibility 2 Quantum Musical Tones 2.1 Bundling Octaves into Single Tones 2.2 Coherent Superposition of Tones as a New Form of Musical Parallelism 2.3 Classical Perception of Quantum Musical Parallelism 3 Quantum Musical Entanglement 4 Quantum Musical Complementarity and Contextuality 5 Bose and Fermi Model of Tones 6 Quantum Visual Arts 7 Can Quantum Art Render Cognitions and Perceptions Beyond Classical Art? 8 Summary References Quanta in Sound, the Sound of Quanta: A Voice-Informed Quantum Theoretical Perspective on Sound 1 SoundvoiceQuanta 1.1 Some Postulates to Live by 2 The Quantum Vocal Theory of Sound 2.1 Preparation and Measurement Along Axes 2.2 Measurement Along an Arbitrary Direction 2.3 Purity and Mixing 2.4 Not Too Sure? Uncertainty Can Be Measured 2.5 Time Flies 3 Quantum Vocal Sound Processing 3.1 Playing with Pure States 3.2 Playing with Mixed States 3.3 From Signal Processing to Quantum Computing, and Back 4 Quantum Evolution of the State (of the Art) 4.1 Concluding Remarks References Quantum Cinema and Quantum Computing 1 Introduction 2 Quantum Cinema—A Digital Vision 3 Lady Lovelace—Poetical Science and the Role of Imagination 3.1 Art and Science 3.2 The Role of Imagination 3.3 How Can We Imagine a Simple Quantum System? 4 The Heisenberg Uncertainty Principle and the Copenhagen Interpretation 4.1 Heisenberg’s Movie Frame Analogy 5 Up, Up to Higher Dimensions 5.1 Higher-Dimensional “Quantum Stuff” and the Curse of Dimensionality 6 Schrödinger’s “Entanglement” 6.1 A Proposal for a Space that Enables Schrödinger’s “Entanglement” 6.2 Entangled States in Quantum Computing 6.3 A Space Composed of Cells 7 Hidden Parameters: Never Neglect a Woman (Grete Hermann) 7.1 More Ignorance and Paradoxes 8 The Geometry of Quantum States 8.1 A New Object in Quantum Geometry 8.2 Quantum Gates 8.3 Quantum Lattices—Why Not Use a 5-Dimensional Cubic Grid? 9 The Hypersphere S3 10 Quantum Algorithms and Fourier Transform 10.1 Quantum Algorithms and Fuchsian Groups 10.2 Factorization of Prime Numbers 10.3 Bernoulli Numbers and the Riemann Hypothesis References How to Make Qubits Speak 1 Networks of Words 2 Language Is Quantum-Native 3 Our New Attempt 4 The Actual Experiment 5 QNLP 6 Beyond Language 7 String Diagrams Are Everywhere 8 Compositionality 9 Meaning-Aware Relational Wholism 10 ...Let's Get Playing! 11 Outlook References A Quantum Computing Approach to Harnessing the Logic of the Mind for Brain–Computer Interfacing 1 Introduction 2 Brain–Computer Interfacing 2.1 The Electroencephalogram (EEG) 2.2 The Semantics of the EEG 3 An EEG-Based Logic of the Mind 4 A Brief Introduction to Quantum Computing and Logic Operations 4.1 The Basics of Quantum Computing 4.2 Quantum Logic Operators 5 Building Logic Expressions from EEG Information 6 Generating Quantum Circuits for Logic Satisfiability 7 Technical and Practical Considerations 7.1 Reducing Outliers 7.2 Running on Quantum Hardware 7.3 Quantum Advantage? 8 A Quantum BCI Musical Instrument 9 Concluding Remarks Appendix 1: Examples from the BCI System Example 1 Example 2 Example 3 Example 4 Appendix 2: Study Using IBM Quantum Computing Resources References The History of Games for (Quantum) Computers 1 Introduction 2 The 1950s: What Can Games Do for Computers? 3 The 1960s: What Can Computers Do for Games? 4 The 1970s: Commercial Success 5 The 2010s: What Can Games Do for Quantum Computers? 6 Quantum Games Without Quantum Computers 7 The 2020s: What Can Quantum Computers Do for Games? 8 Battleships with Partial NOT Gates 9 Single-Qubit Procedural Generation 9.1 The Basic Properties of Qubits 9.2 Properties of an Initialized Qubit 9.3 The X Gate 9.4 The H and RX Gates 9.5 The Bloch Sphere 9.6 Single-Qubit Terrain Generation 10 Conclusion References