دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 3ed.
نویسندگان: Engel T.
سری:
ISBN (شابک) : 9780321766199
ناشر: Pearson
سال نشر: 2013
تعداد صفحات: 533
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 10 مگابایت
در صورت تبدیل فایل کتاب Quantum chemistry and spectroscopy به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب شیمی کوانتومی و طیف سنجی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
شیمی کوانتومی و طیفسنجی انگل و رید به دانشآموزان یک دید کلی معاصر و دقیق از شیمی فیزیک ارائه میدهد و در عین حال بر اصول اولیهای که زیرشاخههای این رشته را متحد میکند، تمرکز میکند. ویرایش سوم همچنان بر مفاهیم اساسی تأکید می کند و پیشرفت های تحقیقاتی پیشرفته ای را ارائه می دهد که شور و نشاط شیمی فیزیک را امروز نشان می دهد. موضوعات کلیدی: از کلاسیک تا مکانیک کوانتومی. معادله شرودینگر؛ اصول مکانیک کوانتومی؛ استفاده از مکانیک کوانتومی در سیستم های ساده. ذره در جعبه و دنیای واقعی. اپراتورهای رفت و آمد و غیر رفت و آمد و پیامدهای شگفت انگیز درهم تنیدگی؛ مدل مکانیکی کوانتومی برای ارتعاش و چرخش مولکول ها. طیفسنجی ارتعاشی و چرخشی مولکولهای دواتمی. اتم هیدروژن؛ اتم های چند الکترونی؛ حالات کوانتومی برای بسیاری از اتم های الکترون و طیف سنجی اتمی. پیوند شیمیایی در مولکول های دو اتمی. ساختار مولکولی و سطوح انرژی برای مولکول های چند اتمی. طیف سنجی الکترونیکی؛ شیمی محاسباتی; تقارن مولکولی؛ طیف سنجی تشدید مغناطیسی هسته ای. بازار: یک مرجع مفید برای هر کسی که نیاز به کسب اطلاعات بیشتر در مورد شیمی کوانتومی و طیفسنجی دارد.
Engel and Reid's Quantum Chemistry and Spectroscopy gives students a contemporary and accurate overview of physical chemistry while focusing on basic principles that unite the sub-disciplines of the field. The Third Edition continues to emphasize fundamental concepts and presents cutting-edge research developments that demonstrate the vibrancy of physical chemistry today. KEY TOPICS: From Classical to Quantum Mechanics; The Schrödinger Equation; The Quantum Mechanical Postulates; Using Quantum Mechanics on Simple Systems; The Particle in the Box and the Real World; Commuting and Noncommuting Operators and the Surprising Consequences of Entanglement; A Quantum Mechanical Model for the Vibration and Rotation of Molecules; The Vibrational and Rotational Spectroscopy of Diatomic Molecules; The Hydrogen Atom; Many-Electron Atoms; Quantum States for Many- Electron Atoms and Atomic Spectroscopy; The Chemical Bond in Diatomic Molecules; Molecular Structure and Energy Levels for Polyatomic Molecules; Electronic Spectroscopy; Computational Chemistry; Molecular Symmetry; Nuclear Magnetic Resonance Spectroscopy. MARKET: A useful reference for anyone who needs to learn more about Quantum Chemistry and Spectroscopy.
Cover Title Page Copyright Page About the Author Acknowledgments CONTENTS PREFACE 1 From Classical to Quantum Mechanics 1.1 Why Study Quantum Mechanics? 1.2 Quantum Mechanics Arose out of the Interplay of Experiments and Theory 1.3 Blackbody Radiation 1.4 The Photoelectric Effect 1.5 Particles Exhibit Wave-Like Behavior 1.6 Diffraction by a Double Slit 1.7 Atomic Spectra and the Bohr Model of the Hydrogen Atom 2 The Schrödinger Equation 2.1 What Determines If a System Needs to Be Described Using Quantum Mechanics? 2.2 Classical Waves and the Nondispersive Wave Equation 2.3 Waves Are Conveniently Represented as Complex Functions 2.4 Quantum Mechanical Waves and the Schrödinger Equation 2.5 Solving the Schrödinger Equation: Operators, Observables, Eigenfunctions, and Eigenvalues 2.6 The Eigenfunctions of a Quantum Mechanical Operator Are Orthogonal 2.7 The Eigenfunctions of a Quantum Mechanical Operator Form a Complete Set 2.8 Summing Up the New Concepts 3 The Quantum Mechanical Postulates 3.1 The Physical Meaning Associated with the Wave Function Is Probability 3.2 Every Observable Has a Corresponding Operator 3.3 The Result of an Individual Measurement 3.4 The Expectation Value 3.5 The Evolution in Time of a Quantum Mechanical System 3.6 Do Superposition Wave Functions Really Exist? 4 Using Quantum Mechanics on Simple Systems 4.1 The Free Particle 4.2 The Particle in a One-Dimensional Box 4.3 Two- and Three-Dimensional Boxes 4.4 Using the Postulates to Understand the Particle in the Box and Vice Versa 5 The Particle in the Box and the Real World 5.1 The Particle in the Finite Depth Box 5.2 Differences in Overlap between Core and Valence Electrons 5.3 Pi Electrons in Conjugated Molecules Can Be Treated as Moving Freely in a Box 5.4 Why Does Sodium Conduct Electricity and Why Is Diamond an Insulator? 5.5 Traveling Waves and Potential Energy Barriers 5.6 Tunneling through a Barrier 5.7 The Scanning Tunneling Microscope and the Atomic Force Microscope 5.8 Tunneling in Chemical Reactions 5.9 (Supplemental) Quantum Wells and Quantum Dots 6 Commuting and Noncommuting Operators and the Surprising Consequences of Entanglement 6.1 Commutation Relations 6.2 The Stern–Gerlach Experiment 6.3 The Heisenberg Uncertainty Principle 6.4 (Supplemental) The Heisenberg Uncertainty Principle Expressed in Terms of Standard Deviations 6.5 (Supplemental) A Thought Experiment Using a Particle in a Three-Dimensional Box 6.6 (Supplemental) Entangled States, Teleportation, and Quantum Computers 7 A Quantum Mechanical Model for the Vibration and Rotation of Molecules 7.1 The Classical Harmonic Oscillator 7.2 Angular Motion and the Classical Rigid Rotor 7.3 The Quantum Mechanical Harmonic Oscillator 7.4 Quantum Mechanical Rotation in Two Dimensions 7.5 Quantum Mechanical Rotation in Three Dimensions 7.6 The Quantization of Angular Momentum 7.7 The Spherical Harmonic Functions 7.8 Spatial Quantization 8 The Vibrational and Rotational Spectroscopy of Diatomic Molecules 8.1 An Introduction to Spectroscopy 8.2 Absorption, Spontaneous Emission, and Stimulated Emission 8.3 An Introduction to Vibrational Spectroscopy 8.4 The Origin of Selection Rules 8.5 Infrared Absorption Spectroscopy 8.6 Rotational Spectroscopy 8.7 (Supplemental) Fourier Transform Infrared Spectroscopy 8.8 (Supplemental) Raman Spectroscopy 8.9 (Supplemental) How Does the Transition Rate between States Depend on Frequency? 9 The Hydrogen Atom 9.1 Formulating the Schrödinger Equation 9.2 Solving the Schrödinger Equation for the Hydrogen Atom 9.3 Eigenvalues and Eigenfunctions for the Total Energy 9.4 The Hydrogen Atom Orbitals 9.5 The Radial Probability Distribution Function 9.6 The Validity of the Shell Model of an Atom 10 Many-Electron Atoms 10.1 Helium: The Smallest Many-Electron Atom 10.2 Introducing Electron Spin 10.3 Wave Functions Must Reflect the Indistinguishability of Electrons 10.4 Using the Variational Method to Solve the Schrödinger Equation 10.5 The Hartree–Fock Self-Consistent Field Method 10.6 Understanding Trends in the Periodic Table from Hartree–Fock Calculations 11 Quantum States for Many-Electron Atoms and Atomic Spectroscopy 11.1 Good Quantum Numbers, Terms, Levels, and States 11.2 The Energy of a Configuration Depends on Both Orbital and Spin Angular Momentum 11.3 Spin-Orbit Coupling Breaks Up a Term into Levels 11.4 The Essentials of Atomic Spectroscopy 11.5 Analytical Techniques Based on Atomic Spectroscopy 11.6 The Doppler Effect 11.7 The Helium-Neon Laser 11.8 Laser Isotope Separation 11.9 Auger Electron and X-Ray Photoelectron Spectroscopies 11.10 Selective Chemistry of Excited States: O([sup(3)]P) and O([sup(1)]D) 11.11 (Supplemental) Configurations with Paired and Unpaired Electron Spins Differ in Energy 12 The Chemical Bond in Diatomic Molecules 12.1 Generating Molecular Orbitals from Atomic Orbitals 12.2 The Simplest One-Electron Molecule: H[sub(2)][sup(+)] 12.3 The Energy Corresponding to the H[sub(2)][sup(+)] Molecular Wave Functions ψ[sub(g)] and ψ[sub(u)] 12.4 A Closer Look at the H[sub(2)][sup(+)] Molecular Wave Functions ψ[sub(g)] and ψ[sub(u)] 12.5 Homonuclear Diatomic Molecules 12.6 The Electronic Structure of Many-Electron Molecules 12.7 Bond Order, Bond Energy, and Bond Length 12.8 Heteronuclear Diatomic Molecules 12.9 The Molecular Electrostatic Potential 13 Molecular Structure and Energy Levels for Polyatomic Molecules 13.1 Lewis Structures and the VSEPR Model 13.2 Describing Localized Bonds Using Hybridization for Methane, Ethene, and Ethyne 13.3 Constructing Hybrid Orbitals for Nonequivalent Ligands 13.4 Using Hybridization to Describe Chemical Bonding 13.5 Predicting Molecular Structure Using Qualitative Molecular Orbital Theory 13.6 How Different Are Localized and Delocalized Bonding Models? 13.7 Molecular Structure and Energy Levels from Computational Chemistry 13.8 Qualitative Molecular Orbital Theory for Conjugated and Aromatic Molecules: The Hückel Mode 13.9 From Molecules to Solids 13.10 Making Semiconductors Conductive at Room Temperature 14 Electronic Spectroscopy 14.1 The Energy of Electronic Transitions 14.2 Molecular Term Symbols 14.3 Transitions between Electronic States of Diatomic Molecules 14.4 The Vibrational Fine Structure of Electronic Transitions in Diatomic Molecules 14.5 UV-Visible Light Absorption in Polyatomic Molecules 14.6 Transitions among the Ground and Excited States 14.7 Singlet–Singlet Transitions: Absorption and Fluorescence 14.8 Intersystem Crossing and Phosphorescence 14.9 Fluorescence Spectroscopy and Analytical Chemistry 14.10 Ultraviolet Photoelectron Spectroscopy 14.11 Single Molecule Spectroscopy 14.12 Fluorescent Resonance Energy Transfer (FRET) 14.13 Linear and Circular Dichroism 14.14 Assigning + and – to Σ Terms of Diatomic Molecules 15 Computational Chemistry 15.1 The Promise of Computational Chemistry 15.2 Potential Energy Surfaces 15.3 Hartree–Fock Molecular Orbital Theory: A Direct Descendant of the Schrödinger Equation 15.4 Properties of Limiting Hartree–Fock Models 15.5 Theoretical Models and Theoretical Model Chemistry 15.6 Moving Beyond Hartree–Fock Theory 15.7 Gaussian Basis Sets 15.8 Selection of a Theoretical Model 15.9 Graphical Models 15.10 Conclusion 16 Molecular Symmetry 16.1 Symmetry Elements, Symmetry Operations, and Point Groups 16.2 Assigning Molecules to Point Groups 16.3 The H[sub(2)]O Molecule and the C[sub(2v)] Point Group 16.4 Representations of Symmetry Operators, Bases for Representations, and the Character Table 16.5 The Dimension of a Representation 16.6 Using the C[sub(2v)] Representations to Construct Molecular Orbitals for H[sub(2)]O 16.7 The Symmetries of the Normal Modes of Vibration of Molecules 16.8 Selection Rules and Infrared versus Raman Activity 16.9 (Supplemental) Using the Projection Operator Method to Generate MOs That Are Bases for Irreducible Representations 17 Nuclear Magnetic Resonance Spectroscopy 17.1 Intrinsic Nuclear Angular Momentum and Magnetic Moment 17.2 The Energy of Nuclei of Nonzero Nuclear Spin in a Magnetic Field 17.3 The Chemical Shift for an Isolated Atom 17.4 The Chemical Shift for an Atom Embedded in a Molecule 17.5 Electronegativity of Neighboring Groups and Chemical Shifts 17.6 Magnetic Fields of Neighboring Groups and Chemical Shifts 17.7 Multiplet Splitting of NMR Peaks Arises through Spin–Spin Coupling 17.8 Multiplet Splitting When More Than Two Spins Interact 17.9 Peak Widths in NMR Spectroscopy 17.10 Solid-State NMR 17.11 NMR Imaging 17.12 (Supplemental)The NMR Experiment in the Laboratory and Rotating Frames 17.13 (Supplemental) Fourier Transform NMR Spectroscopy 17.14 (Supplemental) Two-Dimensional NMR APPENDIX A: Math Supplement APPENDIX B: Point Group Character Tables APPENDIX C: Answers to Selected End-of-Chapter Problems CREDITS INDEX A B C D E F G H I K L M N O P Q R S T U V W X Z