دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Harish Parthasarathy
سری:
ISBN (شابک) : 9780367757038, 9781003163626
ناشر:
سال نشر: 2021
تعداد صفحات: [319]
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 23 Mb
در صورت تبدیل فایل کتاب Quantum Antennas به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب آنتن های کوانتومی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب در مورد چندین سؤال در مورد چگونگی توصیف کوانتیزه شدن چگالی جریان در یک آنتن و در مورد ماهیت میدان الکترومغناطیسی کوانتومی تولید شده توسط چنین چگالی جریان کوانتومی است. چگالی جریان کوانتیزه دوم را می توان از میدان دیراک الکترون ها و پوزیترون ها ایجاد کرد در حالی که میدان الکترومغناطیسی آزاد یا فوتونی از راه حل های معادله موج با ضرایب که عملگر هستند، یعنی عملگرهای ایجاد و نابودی فوتون ها ساخته شده است. توجه: T&F هاردبک را در هند، پاکستان، نپال، بوتان، بنگلادش و سریلانکا نمی فروشد یا توزیع نمی کند.
This book is about several questions regarding how to describe the quantization of the current density in an antenna and about the nature of the quantum electromagnetic field produced by such a quantum current density. The second quantized current density can be built out of the Dirac field of electrons and positrons while the free electromagnetic or photon field is built out of solutions to the wave equation with coefficients being operators, namely the creation and annihilation operators of the photons. Note: T&F does not sell or distribute the Hardback in India, Pakistan, Nepal, Bhutan, Bangladesh and Sri Lanka.
Cover Half Title Title Page Copyright Page Table of Contents Preface Chapter 1: Basic quantum electrodynamics required for the analysis of quantum antennas 1.1 Introduction 1.2 The problems to be discussed 1.3 EM field Lagrangian density 1.4 Electric and magnetic fields in special relativity 1.5 Canonical position and momentum fields in electrodynamics 1.6 The matter fields in electrodynamics 1.7 The Dirac bracket in electrodynamics 1.8 Hamiltonian of the em field 1.9 Interaction Hamiltonian between the current field and the electromagnetic field 1.10 The Boson commutation relations for the creation and annihilation operator fields for the EM field in momentum-spin domain 1.11 Electrodynamics in the Coulomb gauge 1.12 The Dirac second quantized field 1.13 The Dirac equation in an EM field, approximate solution using Perturbation theory 1.14 Electromagnetically perturbed Dirac current Chapter 2: Effects of the gravitational field on a quantum antenna and some basic non-Abelian gauge theory 2.1 The effect of a gravitational field on photon paths 2.2 Interaction of gravitation with the photon field 2.3 Quantum description of the effect of the gravitational field on the photon propagator 2.4 Electrons and positrons in a mixture of the gravitational field and an EM field Quantum antennas in a background gravitational field 2.5 Dirac equation in a gravitational field and a quantum white noise photon field described in the Hudson-Parthasarathy formalism 2.6 Dirac-Yang-Mills current density for non-Abelian gauge theories 2.7 Dirac brackets 2.8 Harish-Chandra’s discrete series representations of SL(2,R) and its application to pattern recognition under Lorentz transformations in the plane 2.9 Estimating the shape of the antenna surface from the scattered EM field when an incident EM field induces a surface current density on the antenna that is determined by Pocklington’s integral equation obtained by setting the tangential component of the total incident plus scattered electric field on the surface to zero 2.10 Surface current density operator induced on the surface of a quantum antenna when a quantum EM field is incident on it 2.11 Summary of the second quantized Dirac field 2.12 Electron propagator computation 2.13 Quantum mechanical tunneling of a Dirac particle through the critical radius of the Schwarzchild blackhole 2.14 Supersymmetry-supersymmetric current in an antenna comprising superpartners of elementary particles Chapter 3: Conducting fluids as quantum antennas 3.1 A short course in basic non-relativistic and relativistic fluid dynamics with antenna theory applications 3.2 Flow of a 2-D conducting fluid 3.3 Finite element method for solving the fluid dynamical equations 3.4 Elimination of pressure, incompressible fluid dynamics in terms of just a single stream function vector field with vanishing divergence 3.5 Fluids driven by random external force fields 3.6 Relativistic fluids, tensor equations 3.7 General relativistic fluids, special solutions 3.8 Galactic evolution using perturbed fluid dynamics, dispersive relations. The unperturbed metric is the Roberson-Walker metric corresponding to a homogeneous and isotropic universe 3.9 Magnetohydrodynamics-diffusion of the magnetic field and vorticity 3.10 Galactic equation using perturbed Newtonian fluids 3.11 Plotting the trajectories of fluid particles 3.12 Statistical theory of fluid turbulence, equations for the velocity field moments, the Kolmogorov-Obhukov spectrum 3.13 Estimating the velocity field of a fluid subject to random forcing using discrete space velocity measurements based on discretization and the Extended Kalman filter 3.14 Quantum fluid dynamics. Quantization of the fluid velocity field by the introduction of an auxiliary Lagrange multiplier field 3.15 Optimal control problems for fluid dynamics 3.16 Hydrodynamic scaling limits for simple exclusion models 3.17 Appendix: The complete fluid dynamical equations in orthogonal curvilinear coordinate systems specializing to cylindrical and spherical polar coordinates Chapter 4: Quantum robots in motion carrying Dirac current as quantum antennas 4.1 A short course in classical and quantum robotics with antenna theory applications 4.2 A fluid of interacting robots 4.3 Disturbance observer in a robot 4.4 Robot connected to a spring mass with damping system Chapter 5: Design of quantum gates using electrons, positrons and photons, quantum information theory and quantum stochastic filtering 5.1 A short course in quantum gates, quantum computation and quantum information with antenna theory applications 5.2 The Baker-Campbell-Hausdor formula. A, B are n x n matrices 5.3 Yang-Mills radiation field (an approximation) 5.4 Belavkin filter applied to estimating the spin of an electron in an external magnetic field. We assume that the magnetic field is B0(t) ∈ R3 Chapter 6: Pattern classification for image fields in motion using Lorentz group representations 6.1 SL(2,C), SL(2,R) and image processing Chapter 7: Optimization problems in classical and quantum stochastics and information with antenna design applications 7.1 A course in optimization techniques 7.2 Group theoretical techniques in optimization theory 7.3 Feynman's diagrammatic approach to computation of the scattering amplitudes of electrons, positrons and photons Chapter 8: Quantum waveguides and cavity resonators 8.1 Quantum waveguides Chapter 9: Classical and quantum filtering and control based on Hudson-Parthasarathy calculus, and filter design methods 9.1 Belavkin filter and Luc-Bouten control for electron spin estimation and quantum Fourier transformed state estimation when corrupted by quantum noise 9.2 General Quantum filtering and control 9.3 Some topics in quantum filtering theory 9.4 Filter design for physical applications Chapter 10: Gravity interacting with waveguide quantum fields with filtering and control 10.1 Waveguides placed in the vicinity of a strong gravitational field 10.2 Some study projects regarding waveguides and cavity resonators in a gravitational field 10.3 A comparison between the EKF and Wavelet based block processing algorithms for estimating transistor parameters in an amplifier drived by the Ornstein-Uhlenbeck process 10.4 Computing the Haar measure on a Lie group using left invariant vector fields and left invariant one forms 10.5 How background em radiation affects the expansion of the universe 10.6 Stochastic BHJ equations in discrete and continuous time for stochastic optimal control based on instantaneous feedback 10.7 Quantum stochastic optimal control of the HP-Schrodinger equation 10.8 Bath in a superposition of coherent states interacting with a system Chapter 11: Basic triangle geometry required for understanding Riemannian geometry in Einstein’s theory of gravity 11.1 Problems in mathematics and physics for school students 11.2 Geometry on a curved surface, study problems Chapter 12: Design of gates using Abelian and non-Abelian gauge quantum field theories with performance analysis using the Hudson-Parthasarathy quantum stochastic calculus 12.1 Design of quantum gates using Feynman diagrams 12.2 An optimization problem in electromagnetism 12.3 Design of quantum gates using non-Abelian gauge theories 12.4 Design of quantum gates using the Hudson-Parthasarathy quantum stochastic Schrodinger equation 12.5 Gravitational waves in a background curved metric 12.6 Topics for a short course on electromagnetic field propagation at high frequencies Chapter 13: Quantum gravity with photon interactions, cavity resonators with inhomogeneities, classical and quantum optimal control of fields 13.1 Quantum control of the HP-Schrodinger equation by state feedback 13.2 Some ppplications of poisson processes 13.3 A problem in optimal control 13.4 Interaction between photons and gravitons 13.5 A version of quantum optimal control 13.6 A neater formulation of the quantum optimal control problem 13.7 Calculating the approximate shift in the oscillation frequency of a cavity resonator having arbitrary cross section when the medium has a small inhomogeneity 13.8 Optimal control for partial dierential equations Chapter 14: Quantization of cavity fields with inhomogeneous media, field dependent media parameters from Boltzmann-Vlasov equations for a plasma, quantum Boltzmann equation for quantum radiation pattern computation, optimal control of classical fields, applications classical nonlinear filtering 14.1 Computing the shift in the characteristic frequencies of oscillation in a cavity resonator due to gravitational effects and the effect of non-uniformity in the medium 14.2 Quantization of the field in a cavity resonator having non-uniform permittivity and permeability 14.3 Problems in transmission lines and waveguides 14.4 Problems in optimization theory 14.5 Another approach to quantization of wave-modes in a cavity resonator having non-uniform medium based on the scalar wave equation 14.6 Derivation of the general structure of the field dependent permittivity and permeability of a plasma 14.7 Other approaches to calculating the permittivity and permeability of a plasma via the use of Boltzmann's kinetic transport equation 14.8 Derivation of the permittivity and permeability functions using quantum statistics 14.9 Approximate discrete time nonlinear filtering for non-Gaussian process and measurement noise 14.10 Quantum theory of many body systems with application to current computation in a Fermi liquid 14.11 Optimal control of gravitational, matter and em fields 14.12 Calculating the modes in a cylindrical cavity resonator with a partition in the middle 14.13 Summary of the algorithm for nonlinear filtering in discrete time applied to fan rotation angle estimation 14.14 Classical filtering theory applied to Levy process and Gaussian measurement noise. Developing the EKF for such problems 14.15 Quantum Boltzmann equation for calculating the radiation fields produced by a plasma Chapter 15: Classical and quantum drone design 15.1 Project proposal on drone design for the removal of pests in a farm 15.2 Quantum drones based on Dirac's relativistic wave equation Chapter 16: Current in a quantum antenna 16.1 Hartree-Fock equations for obtaining the approximate current density produced by a system of interacting electrons 16.2 Controlling the current produced by a single quantum charged particle quantum antenna Chapter 17: Photons in a gravitational field with gate design applications and image processing in electromagnetics 17.1 Some remarks on quantum blackhole physics 17.2 EM field pattern produced by a rotated and translated antenna with noise deblurring 17.3 Estimation of the 3-D rotation and translation vector of an antenna from electromagnetic field measurements 17.4 Mackey’s theory of induced representations applied to estimating the Poincare group element from image pairs 17.5 Effect of electromagnetic radiation on the expanding universe 17.6 Photons inside a cavity 17.7 Justication of the Hartree-Fock Hamiltonian using second order quantum mechanical perturbation theory 17.8 Tetrad formulation of the Einstein-Maxwell field equations 17.9 Optimal quantum gate design in the presence of an electromagnetic field propagating in the Kerr metric 17.10 Maxwell’s equations in the Kerr metric in the tetrad formalism Chapter 18: Quantum fluid antennas interacting with media 18.1 Quantum MHD antenna in a quantum gravitational field 18.2 Applications of scattering theory to quantum antennas 18.3 Wave function of a quantum field with applications to writing down the Schrodinger equation for the expanding universe 18.4 Simple exclusion process and antenna theory 18.5 MHD and quantum antenna theory 18.6 Approximate Hamiltonian formulation of the diffusion equation with applications to quantum antenna theory 18.7 Derivation of the damped wave equation for the electromagnetic field in a conducting media in quantum mechanics using the Lindblad formalism 18.8 Boson-Fermion unication in quantum stochastic calculus References