دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 1st ed. 2020
نویسندگان: Meir Hemmo (editor). Orly Shenker (editor)
سری: Jerusalem Studies in Philosophy and History of Science
ISBN (شابک) : 3030343154, 9783030343156
ناشر: Springer
سال نشر: 2020
تعداد صفحات: 634
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 4 مگابایت
در صورت تبدیل فایل کتاب Quantum, Probability, Logic: The Work and Influence of Itamar Pitowsky (Jerusalem Studies in Philosophy and History of Science) به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب کوانتوم ، احتمال ، منطق: کار و تأثیر ایتامار پیتوفسکی () نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
فصل 1. کلاسیک منطق، احتمال کلاسیک و مکانیک کوانتومی (سامسون آبرامسکی)
فصل 2. چرا واقع گرایان علمی باید جزم دوم مکانیک کوانتومی (والیا آلوری) را رد کنند
فصل 3. حل کردن احتمالات ذهنی و معرفتی ( Guido Bacciagaluppi)فصل 4. دوست ویگنر به عنوان یک عامل منطقی (ورونیکا باومن، چاسلاو بروکنر)
فصل 5. تفسیر معرفتی پیتووسکی از مکانیک کوانتومی و قضیه PBR ( Yemima Ben-Menahem)
فصل 6. در مورد قانون اساسی ریاضی و تبیین حقایق فیزیکی (جوزف برکوویتز)
فصل 7. احتمالات اورتی، قضیه دویچ والاس و اصل اصلی (Harvey R. Brown, Gal Ben Porath)
فصل 8. Redu 'Two Dogmas' (Jeffrey Bub)
فصل 9. پایان نامه های محاسبه پذیری فیزیکی (B. جک کوپلند، اورون شاگریر)
فصل 10. عوامل در نظریه کوانتومی پراگماتیست هیلی: مقایسه ای با رویکرد پیتووسکی به مکانیک کوانتومی (مائورو دوراتو)
فصل 11. مکانیک کوانتومی به عنوان یک نظریه از مشاهدات و حالات و در نتیجه، به عنوان یک نظریه احتمال (جان ارمن، لورا روچه)
فصل 12. مسئله اندازه گیری و دو جزم در مورد مکانیک کوانتومی (لورا فلاین)
فصل 13. بیش از یک راه برای پوست انداختن گربه وجود دارد: اصول اطلاعات کوانتومی در یک جهان محدود (آمیت هاگار)
فصل 14. آیا مکانیک کوانتومی یک نظریه جدید احتمالات است؟ (ریچارد هیلی)فصل 15. مکانیک کوانتومی به عنوان نظریه احتمال (میر همو، اورلی شنکر)
فصل 16. در مورد سه نوع نابرابری بل (گابور) Hofer-Szabó)
فصل 17. در مورد قدرت توصیفی منطق احتمال (ایهود هروشوفسکی)
فصل 18. برهان علیه رایانه های کوانتومی (گیل کالای)فصل 19. چرا یک جهان مکانیکی کوانتومی نسبیتی باید نامعین باشد (Avi Levy، Meir Hemmo)
فصل 20. ذهن گرایان درباره احتمالات کوانتومی باید در مورد حالات کوانتومی واقع گرا باشند (وین سی میروولد)
فصل 21. استدلال نسبیتی اینشتین-پودولسکی-رزن (مایکل قرمز)
فصل 22. چه استقلال آماری قیمت؟ چگونه انیشتین فوتون را از دست داد. (سایمون ساندرز)
فصل 23. مکانیک کوانتومی چگونه (حداکثر) زمینهای است؟ (اندرو دبلیو. سیمونز)
فصل 24. ریشه ها و (باز) منابع ارزش (در) قطعیت در مقابل زمینه (کارل سوزیل)
فصل 25: واکنش شرودینگر به مقاله EPR (Jos Uffink)
فصل 26. مشتقات قانون متولد شده (Lev Vaidman)
فصل 27. حالات پویا و قراردادی بودن (غیر) کلاسیک (الکساندر ویلس).< /p>
Chapter 1. Classical logic, classical probability, and quantum mechanics (Samson Abramsky)
Chapter 2. Why Scientific Realists Should Reject the Second Dogma of Quantum Mechanic (Valia Allori)
Chapter 3. Unscrambling Subjective and Epistemic Probabilities (Guido Bacciagaluppi)Chapter 4. Wigner’s Friend as a Rational Agent (Veronika Baumann, Časlav Brukner)
Chapter 5. Pitowsky's Epistemic Interpretation of Quantum Mechanics and the PBR Theorem (Yemima Ben-Menahem)
Chapter 6. On the Mathematical Constitution and Explanation of Physical Facts (Joseph Berkovitz)
Chapter 7. Everettian probabilities, the Deutsch-Wallace theorem and the Principal Principle (Harvey R. Brown, Gal Ben Porath)
Chapter 8. ‘Two Dogmas’ Redu (Jeffrey Bub)
Chapter 9. Physical Computability Theses (B. Jack Copeland, Oron Shagrir)
Chapter 10. Agents in Healey’s Pragmatist Quantum Theory: A Comparison with Pitowsky’s Approach to Quantum Mechanics (Mauro Dorato)
Chapter 11. Quantum Mechanics As a Theory of Observables and States and, Thereby, As a Theory of Probability (John Earman, Laura Ruetsche)
Chapter 12. The Measurement Problem and two Dogmas about Quantum Mechanic (Laura Felline)
Chapter 13. There Is More Than One Way to Skin a Cat: Quantum Information Principles In a Finite World(Amit Hagar)
Chapter 14. Is Quantum Mechanics a New Theory of Probability? (Richard Healey)Chapter 15. Quantum Mechanics as a Theory of Probability (Meir Hemmo, Orly Shenker)
Chapter 16. On the Three Types of Bell's Inequalities (Gábor Hofer-Szabó)
Chapter 17. On the Descriptive Power of Probability Logic (Ehud Hrushovski)
Chapter 18. The Argument against Quantum Computers (Gil Kalai)Chapter 19. Why a Relativistic Quantum Mechanical World Must be Indeterministic (Avi Levy, Meir Hemmo)
Chapter 20. Subjectivists about Quantum Probabilities Should be Realists about Quantum States (Wayne C. Myrvold)
Chapter 21. The Relativistic Einstein-Podolsky-Rosen Argument (Michael Redhead)
Chapter 22. What price statistical independence? How Einstein missed the photon.(Simon Saunders)
Chapter 23. How (Maximally) Contextual is Quantum Mechanics? (Andrew W. Simmons)
Chapter 24. Roots and (Re)Sources of Value (In)Definiteness Versus Contextuality (Karl Svozil)
Chapter 25: Schrödinger’s Reaction to the EPR Paper (Jos Uffink)
Chapter 26. Derivations of the Born Rule (Lev Vaidman)
Chapter 27. Dynamical States and the Conventionality of (Non-) Classicality (Alexander Wilce).
Preface Itamar Pitowsky: Academic Genealogy and the Arrow of Time Itamar Pitowsky: Selected Publications Contents Contributors 1 Classical Logic, Classical Probability, and Quantum Mechanics 1.1 Introduction 1.2 Boole\'s ``Conditions of Possible Experience\'\' 1.2.1 An Example: The Bell Table 1.2.1.1 Logical Analysis of the Bell Table 1.2.2 The General Form 1.3 From Correlation Polytopes to Non-contextual Polytopes 1.3.1 Formalization 1.3.2 The Non-contextual Polytope 1.3.3 Completeness of Logical Bell Inequalities 1.4 The Contextual Fraction 1.5 Remarks on Complexity 1.6 The ``Edge of Logical Contradiction\'\' vs. the ``Boundary of Paradox\'\' 1.7 Concluding Remarks References 2 Why Scientific Realists Should Reject the Second Dogma of Quantum Mechanics 2.1 Introduction 2.2 The IT Account, the Two Dogmas, and the Measurement Problem 2.3 The IT Approach as a Kinematic Theory 2.4 Objections to the Explanatory Superiority of Kinematic Theories 2.5 Accepting the Second Dogma: Wavefunction Realism 2.6 Why Realists Should Reject the Second Dogma 2.7 The Dogmas, Scientific Realism, and the Role of Explanation 2.8 On the Status of the Wavefunction 2.9 Objections Based on the Wavefunction Being Epistemic 2.10 The Wavefunction Is as the Wavefunction Does 2.11 Conclusion References 3 Unscrambling Subjective and Epistemic Probabilities 3.1 Subjective or Epistemic Probabilities? 3.2 Subjective vs Objective Probabilities 3.3 Epistemic vs Ontic Probabilties 3.4 Subjective Ontic Probabilities 3.5 Epistemic Objective Probabilities 3.6 Redrawing the Subjective-Objective Distinction 3.7 Redrawing the Epistemic-Ontic Distinction 3.8 Remarks on Time Symmetry 3.9 Further Remarks on the Quantum State 3.10 Hume and de Finetti References 4 Wigner\'s Friend as a Rational Agent 4.1 Introduction 4.2 Wigner, Friend and Contradictions 4.3 Discussion Modified Born Rule ch4:baumann2017formalisms References 5 Pitowsky\'s Epistemic Interpretation of Quantum Mechanics and the PBR Theorem 5.1 Introduction 5.2 Born\'s Probabilistic Interpretation and Its Problems 5.3 Pitowsky\'s Interpretation of QM 5.4 The PBR Theorem 5.5 Possible Responses by the Epistemic Theorist 5.6 Instrumentalism References 6 On the Mathematical Constitution and Explanation of Physical Facts 6.1 The Orthodoxy 6.2 An Alternative Perspective 6.3 On the Relationship Between Mathematics and Physics 6.4 On Conceptions of Mathematical Constitution of the Physical 6.5 On the Common View of How Mathematical Models Represent Physical Reality 6.6 On the Notion of the Physical 6.7 On the Scope of the Mathematical Constitution of the Physical 6.8 A Sketch of a New Account of Mathematical Explanation of Physical Facts 6.9 On Mathematical Explanations of Physical Facts 6.9.1 On a D-N Mathematical Explanation of the Life Cycle of `Periodical\' Cicadas 6.9.2 On Structural Explanation of the Uncertainty Relations 6.9.3 On Abstract Mathematical Explanation of the Impossibility of a Minimal Tour Across the Bridges of Königsberg 6.9.4 On Explanations by Constraints that Are More Necessary than Laws of Nature 6.10 Is the Effectiveness of Mathematics in Physics Unreasonable? References 7 Everettian Probabilities, The Deutsch-Wallace Theorem and the Principal Principle 7.1 Introduction 7.2 Quantum Probability and Gleason\'s Theorem 7.3 The Riddle of Probability 7.3.1 Chances 7.3.2 Carbon-14 and the Neutron 7.3.3 The Law of Large Numbers 7.3.4 The Principal Principle 7.4 Quantum Probability Again 7.4.1 The Principle of Indifference 7.4.2 Deutsch 7.4.3 Wallace 7.5 A Quantum Justification of the Principal Principle? 7.5.1 Wallace and Saunders 7.5.2 Earman 7.6 The Refutability Issue for Everettian Probability 7.7 Conclusions References 8 `Two Dogmas\' Redux 8.1 Introduction 8.2 The Information-Theoretic Interpretation 8.3 Encapsulated Measurements and the Everett Interpretation 8.4 A Clarification 8.5 Concluding Remarks References 9 Physical Computability Theses 9.1 Introduction 9.2 Three Physicality Theses: Modest, Bold and Super-Bold 9.3 Challenging the Modest Thesis: Relativistic Computation 9.4 Challenging the Bold Thesis 9.5 Challenging the Super-Bold Thesis 9.6 Conclusion References 10 Agents in Healey\'s Pragmatist Quantum Theory: A Comparison with Pitowsky\'s Approach to Quantum Mechanics 10.1 Introduction 10.2 A Brief Review of PQT 10.3 Is PQT Really Realist? 10.4 The Incompatibility Between PQT and Agent Physicalism 10.5 What Is an Agent in PQT? 10.6 Why Pitowsky\'s Information-Theoretic Approach to Quantum Theory Also Needs Agents 10.6.1 Realism 10.6.2 Probability 10.6.3 Information References 11 Quantum Mechanics As a Theory of Observables and States (And, Thereby, As a Theory of Probability) 11.1 Introduction 11.2 Restatement of Thesis 1 11.3 The Relation Between Quantum States and Quantum Probabilities 11.3.1 Quantum States 11.3.2 From States to Probabilities, and from Probabilities to States 11.3.3 The Born Rule and a Challenge for T2 and T2 11.4 Justifying Normality/Complete Additivity 11.4.1 Normality and the Practice of QM 11.4.2 Justifying Normality: T2 11.4.3 Justifying Normality: T2 11.4.4 Finitizing 11.5 Ontological Priority of States: State Preparation and Objective Probabilities 11.6 Fighting Back: An Alternative Account of `State Preparation\' 11.6.1 Updating Quantum Probabilities 11.6.2 `State Preparation\' According to T2 11.7 State Preparation in QFT 11.7.1 The Conundrum 11.7.2 The Buchholz, Doplicher, and Longo Theorem 11.8 Taking Stock 11.9 The Measurement Problem 11.10 Conclusion Appendix 1 The Lattice of Projections Appendix 2 Locally Normal States in Algebraic QFT Appendix 3 No Filters for Mixed States Appendix 4 Belief Filters Are State Filters Appendix 5 The Buchholz-Doplicher-Longo Theorem Appendix 6 Interpreting the Buchholz-Doplicher-Longo Theorem References 12 The Measurement Problem and Two Dogmas About Quantum Mechanics 12.1 Introduction 12.2 Two Dogmas and Two Problems 12.3 Incompatible Predictions in Black-Box Approaches 12.4 QBism 12.5 Bub\'s Information-Theoretic Interpretation of QT 12.6 Pitowsky\'s Information-Theoretic Interpretation 12.7 A Bohrian Escape 12.8 Conclusions References 13 There Is More Than One Way to Skin a Cat: Quantum Information Principles in a Finite World 13.1 In Memory 13.2 Introduction 13.3 Knowledge, or Lack Thereof 13.3.1 How Slow Is Slow Enough 13.3.2 How Fast Is Fast Enough 13.4 Moral References 14 Is Quantum Mechanics a New Theory of Probability? 14.1 Introduction 14.2 Quantum Measure Theory 14.3 Quantum Gambles 14.4 Objective Knowledge of Quantum Events 14.5 A Pragmatist View of Quantum Probability 14.6 Conclusion References 15 Quantum Mechanics as a Theory of Probability 15.1 Introduction 15.2 The Bub-Pitowsky Approach 15.3 The Role of Decoherence in the Consistency Proof 15.4 From Subjectivism to Idealism References 16 On the Three Types of Bell\'s Inequalities 16.1 Introduction 16.2 Case 1: Bell\'s Inequalities for Classical Probabilities 16.3 Case 2: Bell\'s Inequalities for Classical Conditional Probabilities 16.4 Relating Case 1 and Case 2 16.5 Case 3: Bell\'s Inequalities for Quantum Probabilities 16.6 The EPR-Bohm Scenario 16.7 Conclusions References 17 On the Descriptive Power of Probability Logic 17.1 Introduction: Logic as a Descriptive Tool 17.2 Continuous Logic 17.3 Probability Logic 17.4 The Recognition of Space 17.5 Unary and Monadic 17.6 Nothing But Space References 18 The Argument Against Quantum Computers 18.1 Introduction 18.2 Basic Models of Computation 18.2.1 Pitowsky\'s ``Constructivist Computer,\'\' Boolean Functions, and Boolean Circuits 18.2.2 Easy and Hard Problems and Pitowsky\'s ``Finitist Computer\'\' 18.2.3 Quantum Computers 18.2.4 Noisy Quantum Circuits 18.2.5 Quantum Supremacy and NISQ Devices 18.3 The Argument Against Quantum Computers 18.3.1 The Argument 18.3.2 Predictions on NISQ Computers 18.3.3 Non-interacting Bosons 18.3.4 From Boson Sampling to NISQ Circuits 18.3.5 The Scope of the Argument 18.3.6 Noise Stability, Noise Sensitivity, and Classical Computation 18.3.7 The Extended Church–Turing Thesis Revisited 18.4 The Failure of Quantum Computers: Underlying Principles and Consequences 18.4.1 Noise Stability of Low-Entropy States Principle 1: Probability Distributions Described by Low-Entropy States Are Noise Stable and Can Be Expressed by Low-Degree Polynomials 18.4.1.1 Learnability 18.4.1.2 Reaching Ground States 18.4.2 Noise and Time-Dependent Evolutions Principle 2: Time-Dependent (Local) Quantum Evolutions Are Inherently Noisy 18.4.3 Noise and Correlation Principle 3: Entangled Qubits Are Subject to Positively Correlated Noise 18.4.4 A Taste of Other Consequences 18.5 Conclusion 18.6 Itamar References 19 Why a Relativistic Quantum Mechanical World Must Be Indeterministic 19.1 Introduction 19.2 The Hidden Variable Model (HVM) Framework 19.2.1 Basic Definitions 19.2.2 Definitions of Properties of Hidden Variable Models (HVM) 19.2.3 Existence Theorems and Relations Between HVM Properties 19.3 Properties of Empirical Models and Their Relations 19.4 Contextuality 19.5 Empirical Models and Special Relativity 19.6 Application of Our No-Go Proof to Interpretations of QM 19.7 Conclusion References 20 Subjectivists About Quantum Probabilities Should Be Realists About Quantum States 20.1 Introduction 20.2 Credence and Action: Some Preliminary Considerations 20.3 Constructing a Framework 20.4 Ontic Distinctness of Non-orthogonal States 20.5 The QBist Response 20.6 An Argument from Locality? 20.7 Conclusion References 21 The Relativistic Einstein-Podolsky-Rosen Argument 21.1 Preliminaries 21.2 The Crux of the Argument 21.3 The Thesis of Myself and La Rivière\'s Paper 21.4 But there Is a Catch… 21.5 Conclusion A.1 Appendix A.1.1 Realist Interpretations A.1.2 Anti-Realist Interpretations References 22 What Price Statistical Independence? How Einstein Missed the Photon 22.1 Overview 22.2 The Gibbs Paradox and `Mutual Independence\' 22.3 Einstein\'s `Miraculous Argument\' 22.4 Gibbs\' Generic Phase as the Limit of Bose-Einstein Statistics 22.5 Locality and Entanglement 22.6 Particle Trajectories and the Gibbs Paradox References 23 How (Maximally) Contextual Is Quantum Mechanics? 23.1 Introduction 23.2 How Robust Can Quantum Maximal Contextuality Be? 23.2.1 Triangle-Free Graphs 23.3 Higher-Rank PVMs 23.4 Conclusion and Future Work References 24 Roots and (Re)sources of Value (In)definiteness VersusContextuality 24.1 Introduction 24.2 Stochastic Value Indefiniteness/Indeterminacy by Boole-Bell Type Conditions of Possible Experience 24.3 Interlude: Quantum Probabilities from Pythagorean ``Views on Vectors\'\' 24.4 Classical Value Indefiniteness/Indeterminacy by Direct Observation 24.5 Classical Value Indefiniteness/Indeterminacy Piled Higher and Deeper: The Logical Indeterminacy Principle 24.6 The ``Message\'\' of Quantum (In)determinacy 24.6.1 Simultaneous Definiteness of Counterfactual, Complementary Observables, and Abandonment of Context Independence 24.6.2 Abandonment of Omni-Value Definiteness of Observables in All But One Context 24.7 Biographical Notes on Itamar Pitowsky References 25 Schrödinger\'s Reaction to the EPR Paper 25.1 Introduction 25.2 The Argumentation of the EPR Paper 25.3 Schrödinger\'s Objections to the EPR Argument 25.4 Einstein\'s Reply to Schrödinger 25.5 What Did Schrödinger Make of the EPR Argument? 25.5.1 Schrödinger\'s Interpretation of the Wave Function 25.5.2 Schrödinger\'s Take on the EPR Problem 25.6 The Origins of the Cat Paradox References 26 Derivations of the Born Rule 26.1 Introduction 26.2 Frequentist Approach 26.3 The Born Rule and the Measuring Procedure 26.4 Symmetry Arguments 26.5 Other Approaches 26.6 Summary of My View References 27 Dynamical States and the Conventionality of (Non-) Classicality 27.1 Introduction 27.2 Probability Theory vs Probabilistic Theories 27.2.1 Test Spaces, Probability Weights, and Probabilistic Models 27.2.2 Some Examples 27.2.3 Probabilistic Models Linearized 27.2.4 Probabilistic Theories 27.3 Classicality and Classical Representations 27.3.1 Classical Models and Classical Embeddings 27.3.2 Classical Extensions 27.3.3 Semiclassical Covers 27.3.4 Discussion 27.4 4 27.4.1 Models with Symmetry 27.4.2 A Representation in Terms of Dynamical States 27.5 Composite Models, Entanglement and Locality 27.5.1 Composites of Probabilistic Models 27.5.2 Entanglement 27.5.3 Locality and Hidden Variables 27.5.4 Composites of Dynamical Models 27.6 Conclusion Appendix A Common Refinements Appendix B Semiclassical Test Spaces Appendix C Constructing Fully G-Symmetric Models References