دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: Revised
نویسندگان: Alexander J. McNeil
سری: Princeton Series in Finance
ISBN (شابک) : 9780691166278, 0691166277
ناشر: Princeton University Press
سال نشر: 2015
تعداد صفحات: 721
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 8 مگابایت
در صورت تبدیل فایل کتاب Quantitative risk management : concepts, techniques and tools به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب مدیریت ریسک کمی: مفاهیم، تکنیک ها و ابزار نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Cover Title Copyright Dedication Contents Preface I An Introduction to Quantitative Risk Management 1 Risk in Perspective 1.1 Risk 1.1.1 Risk and Randomness 1.1.2 Financial Risk 1.1.3 Measurement and Management 1.2 A Brief History of Risk Management 1.2.1 From Babylon to Wall Street 1.2.2 The Road to Regulation 1.3 The Regulatory Framework 1.3.1 The Basel Framework 1.3.2 The Solvency II Framework 1.3.3 Criticism of Regulatory Frameworks 1.4 Why Manage Financial Risk? 1.4.1 A Societal View 1.4.2 The Shareholder’s View 1.5 Quantitative Risk Management 1.5.1 The Q in QRM 1.5.2 The Nature of the Challenge 1.5.3 QRM Beyond Finance 2 Basic Concepts in Risk Management 2.1 Risk Management for a Financial Firm 2.1.1 Assets, Liabilities and the Balance Sheet 2.1.2 Risks Faced by a Financial Firm 2.1.3 Capital 2.2 Modelling Value and Value Change 2.2.1 Mapping Risks 2.2.2 Valuation Methods 2.2.3 Loss Distributions 2.3 Risk Measurement 2.3.1 Approaches to Risk Measurement 2.3.2 Value-at-Risk 2.3.3 VaR in Risk Capital Calculations 2.3.4 Other Risk Measures Based on Loss Distributions 2.3.5 Coherent and Convex Risk Measures 3 Empirical Properties of Financial Data 3.1 Stylized Facts of Financial Return Series 3.1.1 Volatility Clustering 3.1.2 Non-normality and Heavy Tails 3.1.3 Longer-Interval Return Series 3.2 Multivariate Stylized Facts 3.2.1 Correlation between Series 3.2.2 Tail Dependence II Methodology 4 Financial Time Series 4.1 Fundamentals of Time Series Analysis 4.1.1 Basic Definitions 4.1.2 ARMA Processes 4.1.3 Analysis in the Time Domain 4.1.4 Statistical Analysis of Time Series 4.1.5 Prediction 4.2 GARCH Models for Changing Volatility 4.2.1 ARCH Processes 4.2.2 GARCH Processes 4.2.3 Simple Extensions of the GARCH Model 4.2.4 Fitting GARCH Models to Data 4.2.5 Volatility Forecasting and Risk Measure Estimation 5 Extreme Value Theory 5.1 Maxima 5.1.1 Generalized Extreme Value Distribution 5.1.2 Maximum Domains of Attraction 5.1.3 Maxima of Strictly Stationary Time Series 5.1.4 The Block Maxima Method 5.2 Threshold Exceedances 5.2.1 Generalized Pareto Distribution 5.2.2 Modelling Excess Losses 5.2.3 Modelling Tails and Measures of Tail Risk 5.2.4 The Hill Method 5.2.5 Simulation Study of EVT Quantile Estimators 5.2.6 Conditional EVT for Financial Time Series 5.3 Point Process Models 5.3.1 Threshold Exceedances for Strict White Noise 5.3.2 The POT Model 6 Multivariate Models 6.1 Basics of Multivariate Modelling 6.1.1 Random Vectors and Their Distributions 6.1.2 Standard Estimators of Covariance and Correlation 6.1.3 The Multivariate Normal Distribution 6.1.4 Testing Multivariate Normality 6.2 Normal Mixture Distributions 6.2.1 Normal Variance Mixtures 6.2.2 Normal Mean–Variance Mixtures 6.2.3 Generalized Hyperbolic Distributions 6.2.4 Empirical Examples 6.3 Spherical and Elliptical Distributions 6.3.1 Spherical Distributions 6.3.2 Elliptical Distributions 6.3.3 Properties of Elliptical Distributions 6.3.4 Estimating Dispersion and Correlation 6.4 Dimension-Reduction Techniques 6.4.1 Factor Models 6.4.2 Statistical Estimation Strategies 6.4.3 Estimating Macroeconomic Factor Models 6.4.4 Estimating Fundamental Factor Models 6.4.5 Principal Component Analysis 7 Copulas and Dependence 7.1 Copulas 7.1.1 Basic Properties 7.1.2 Examples of Copulas 7.1.3 Meta Distributions 7.1.4 Simulation of Copulas and Meta Distributions 7.1.5 Further Properties of Copulas 7.2 Dependence Concepts and Measures 7.2.1 Perfect Dependence 7.2.2 Linear Correlation 7.2.3 Rank Correlation 7.2.4 Coefficients of Tail Dependence 7.3 Normal Mixture Copulas 7.3.1 Tail Dependence 7.3.2 Rank Correlations 7.3.3 Skewed Normal Mixture Copulas 7.3.4 Grouped Normal Mixture Copulas 7.4 Archimedean Copulas 7.4.1 Bivariate Archimedean Copulas 7.4.2 Multivariate Archimedean Copulas 7.5 Fitting Copulas to Data 7.5.1 Method-of-Moments Using Rank Correlation 7.5.2 Forming a Pseudo-sample from the Copula 7.5.3 Maximum Likelihood Estimation 8 Aggregate Risk 8.1 Coherent and Convex Risk Measures 8.1.1 Risk Measures and Acceptance Sets 8.1.2 Dual Representation of Convex Measures of Risk 8.1.3 Examples of Dual Representations 8.2 Law-Invariant Coherent Risk Measures 8.2.1 Distortion Risk Measures 8.2.2 The Expectile Risk Measure 8.3 Risk Measures for Linear Portfolios 8.3.1 Coherent Risk Measures as Stress Tests 8.3.2 Elliptically Distributed Risk Factors 8.3.3 Other Risk Factor Distributions 8.4 Risk Aggregation 8.4.1 Aggregation Based on Loss Distributions 8.4.2 Aggregation Based on Stressing Risk Factors 8.4.3 Modular versus Fully Integrated Aggregation Approaches 8.4.4 Risk Aggregation and Fréchet Problems 8.5 Capital Allocation 8.5.1 The Allocation Problem 8.5.2 The Euler Principle and Examples 8.5.3 Economic Properties of the Euler Principle III Applications 9 Market Risk 9.1 Risk Factors and Mapping 9.1.1 The Loss Operator 9.1.2 Delta and Delta–Gamma Approximations 9.1.3 Mapping Bond Portfolios 9.1.4 Factor Models for Bond Portfolios 9.2 Market Risk Measurement 9.2.1 Conditional and Unconditional Loss Distributions 9.2.2 Variance–Covariance Method 9.2.3 Historical Simulation 9.2.4 Dynamic Historical Simulation 9.2.5 Monte Carlo 9.2.6 Estimating Risk Measures 9.2.7 Losses over Several Periods and Scaling 9.3 Backtesting 9.3.1 Violation-Based Tests for VaR 9.3.2 Violation-Based Tests for Expected Shortfall 9.3.3 Elicitability and Comparison of Risk Measure Estimates 9.3.4 Empirical Comparison of Methods Using Backtesting Concepts 9.3.5 Backtesting the Predictive Distribution 10 Credit Risk 10.1 Credit-Risky Instruments 10.1.1 Loans 10.1.2 Bonds 10.1.3 Derivative Contracts Subject to Counterparty Risk 10.1.4 Credit Default Swaps and Related Credit Derivatives 10.1.5 PD, LGD and EAD 10.2 Measuring Credit Quality 10.2.1 Credit Rating Migration 10.2.2 Rating Transitions as a Markov Chain 10.3 Structural Models of Default 10.3.1 The Merton Model 10.3.2 Pricing in Merton’s Model 10.3.3 Structural Models in Practice: EDF and DD 10.3.4 Credit-Migration Models Revisited 10.4 Bond and CDS Pricing in Hazard Rate Models 10.4.1 Hazard Rate Models 10.4.2 Risk-Neutral Pricing Revisited 10.4.3 Bond Pricing 10.4.4 CDS Pricing 10.4.5 P versus Q: Empirical Results 10.5 Pricing with Stochastic Hazard Rates 10.5.1 Doubly Stochastic Random Times 10.5.2 Pricing Formulas 10.5.3 Applications 10.6 Affine Models 10.6.1 Basic Results 10.6.2 The CIR Square-Root Diffusion 10.6.3 Extensions 11 Portfolio Credit Risk Management 11.1 Threshold Models 11.1.1 Notation for One-Period Portfolio Models 11.1.2 Threshold Models and Copulas 11.1.3 Gaussian Threshold Models 11.1.4 Models Based on Alternative Copulas 11.1.5 Model Risk Issues 11.2 Mixture Models 11.2.1 Bernoulli Mixture Models 11.2.2 One-Factor Bernoulli Mixture Models 11.2.3 Recovery Risk in Mixture Models 11.2.4 Threshold Models as Mixture Models 11.2.5 Poisson Mixture Models and CreditRisk^+ 11.3 Asymptotics for Large Portfolios 11.3.1 Exchangeable Models 11.3.2 General Results 11.3.3 The Basel IRB Formula 11.4 Monte Carlo Methods 11.4.1 Basics of Importance Sampling 11.4.2 Application to Bernoulli Mixture Models 11.5 Statistical Inference in Portfolio Credit Models 11.5.1 Factor Modelling in Industry Threshold Models 11.5.2 Estimation of Bernoulli Mixture Models 11.5.3 Mixture Models as GLMMs 11.5.4 A One-Factor Model with Rating Effect 12 Portfolio Credit Derivatives 12.1 Credit Portfolio Products 12.1.1 Collateralized Debt Obligations 12.1.2 Credit Indices and Index Derivatives 12.1.3 Basic Pricing Relationships for Index Swaps and CDOs 12.2 Copula Models 12.2.1 Definition and Properties 12.2.2 Examples 12.3 Pricing of Index Derivatives in Factor Copula Models 12.3.1 Analytics 12.3.2 Correlation Skews 12.3.3 The Implied Copula Approach 13 Operational Risk and Insurance Analytics 13.1 Operational Risk in Perspective 13.1.1 An Important Risk Class 13.1.2 The Elementary Approaches 13.1.3 Advanced Measurement Approaches 13.1.4 Operational Loss Data 13.2 Elements of Insurance Analytics 13.2.1 The Case for Actuarial Methodology 13.2.2 The Total Loss Amount 13.2.3 Approximations and Panjer Recursion 13.2.4 Poisson Mixtures 13.2.5 Tails of Aggregate Loss Distributions 13.2.6 The Homogeneous Poisson Process 13.2.7 Processes Related to the Poisson Process IV Special Topics 14 Multivariate Time Series 14.1 Fundamentals of Multivariate Time Series 14.1.1 Basic Definitions 14.1.2 Analysis in the Time Domain 14.1.3 Multivariate ARMA Processes 14.2 Multivariate GARCH Processes 14.2.1 General Structure of Models 14.2.2 Models for Conditional Correlation 14.2.3 Models for Conditional Covariance 14.2.4 Fitting Multivariate GARCH Models 14.2.5 Dimension Reduction in MGARCH 14.2.6 MGARCH and Conditional Risk Measurement 15 Advanced Topics in Multivariate Modelling 15.1 Normal Mixture and Elliptical Distributions 15.1.1 Estimation of Generalized Hyperbolic Distributions 15.1.2 Testing for Elliptical Symmetry 15.2 Advanced Archimedean Copula Models 15.2.1 Characterization of Archimedean Copulas 15.2.2 Non-exchangeable Archimedean Copulas 16 Advanced Topics in Extreme Value Theory 16.1 Tails of Specific Models 16.1.1 Domain of Attraction of the Fréchet Distribution 16.1.2 Domain of Attraction of the Gumbel Distribution 16.1.3 Mixture Models 16.2 Self-exciting Models for Extremes 16.2.1 Self-exciting Processes 16.2.2 A Self-exciting POT Model 16.3 Multivariate Maxima 16.3.1 Multivariate Extreme Value Copulas 16.3.2 Copulas for Multivariate Minima 16.3.3 Copula Domains of Attraction 16.3.4 Modelling Multivariate Block Maxima 16.4 Multivariate Threshold Exceedances 16.4.1 Threshold Models Using EV Copulas 16.4.2 Fitting a Multivariate Tail Model 16.4.3 Threshold Copulas and Their Limits 17 Dynamic Portfolio Credit Risk Models and Counterparty Risk 17.1 Dynamic Portfolio Credit Risk Models 17.1.1 Why Dynamic Models of Portfolio Credit Risk? 17.1.2 Classes of Reduced-Form Models of Portfolio Credit Risk 17.2 Counterparty Credit Risk Management 17.2.1 Uncollateralized Value Adjustments for a CDS 17.2.2 Collateralized Value Adjustments for a CDS 17.3 Conditionally Independent Default Times 17.3.1 Definition and Mathematical Properties 17.3.2 Examples and Applications 17.3.3 Credit Value Adjustments 17.4 Credit Risk Models with Incomplete Information 17.4.1 Credit Risk and Incomplete Information 17.4.2 Pure Default Information 17.4.3 Additional Information 17.4.4 Collateralized Credit Value Adjustments and Contagion Effects Appendix A.1 Miscellaneous Definitions and Results A.1.1 Type of Distribution A.1.2 Generalized Inverses and Quantiles A.1.3 Distributional Transform A.1.4 Karamata’s Theorem A.1.5 Supporting and Separating Hyperplane Theorems A.2 Probability Distributions A.2.1 Beta A.2.2 Exponential A.2.3 F A.2.4 Gamma A.2.5 Generalized Inverse Gaussian A.2.6 Inverse Gamma A.2.7 Negative Binomial A.2.8 Pareto A.2.9 Stable A.3 Likelihood Inference A.3.1 Maximum Likelihood Estimators A.3.2 Asymptotic Results: Scalar Parameter A.3.3 Asymptotic Results: Vector of Parameters A.3.4 Wald Test and Confidence Intervals A.3.5 Likelihood Ratio Test and Confidence Intervals A.3.6 Akaike Information Criterion References Index