دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 1 نویسندگان: Nikolas Provatas, Tatu Pinomaa, Nana Ofori-Opoku سری: ISBN (شابک) : 0367768577, 9780367768577 ناشر: CRC Press سال نشر: 2021 تعداد صفحات: 186 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 9 مگابایت
در صورت تبدیل فایل کتاب Quantitative Phase Field Modelling of Solidification به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب مدلسازی میدانی فاز کمی انجماد نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Cover Half Title Title Page Copyright Page Contents Authors Chapter 1: A Brief History of Phase Field Modelling Chapter 2: Overview of This Book Section I Chapter 3: Recap of Grand Potential Thermodynamics Chapter 4: Grand Potential Phase Field Functional 4.1. INTERACTION BETWEEN ORDER PARAMETERS 4.2. PROPERTIES OF THE SINGLE-PHASE GRAND POTENTIAL w v(μ) 4.3. CONCENTRATION IN A MULTI-PHASE SYSTEM IN THE GRAND POTENTIAL ENSEMBLE Chapter 5: Phase Field Dynamics: {O , ci} versus {O ,μi} Evolution 5.1. TIME EVOLUTION IN THE “TRADITIONAL” FIELDS {Oa} AND {ci} 5.2. REFORMULATION OF PHASE FIELD MODEL DYNAMICS IN TERMS OF a AND μi 5.2.1. Order Parameter Evolution 5.2.2. Chemical Potential Evolution Chapter 6: Re-Casting Phase Field Equations for Quantitative Simulations 6.1. NON-VARIATIONAL MODIFICATIONS TO PHASE FIELD EQUATIONS 6.2. CHOICE OF INTERPOLATION FUNCTIONS Chapter 7: Equilibrium Properties of the Grand Potential Functional 7.1. EQUILIBRIUM CONCENTRATION FIELD 7.2. EQUILIBRIUM SOLID-LIQUID INTERFACES 7.3. EQUILIBRIUM SOLID-SOLID INTERFACES: APPROACH I—BASIC MODEL 7.4. EQUILIBRIUM SOLID-SOLID INTERFACES: APPROACH II—MODIFICATION OF MODEL 7.5. SELECTING BETWEEN PHASE FIELD MODELS Chapter 8: Thermal Fluctuations in Phase Field Equations 8.1. NON-DIMENSIONAL FORM OF PHASE FIELD EQUATIONS 8.2. SIMPLIFICATION OF NOISE AMPLITUDE FOR THE ORDER PARAMETER EQUATION 8.3. SIMPLIFICATION OF NOISE AMPLITUDE FOR THE SOLUTE EQUATION Section II Chapter 9: Special Cases of the Grand Potential Phase Field Model 9.1. POLYCRYSTALLINE MULTI-COMPONENT ALLOY SOLIDIFICATION AT LOW SUPERSATURATION 9.1.1. Evaluating the Equilibrium Reference Chemical Potentials μ eq i 9.1.2. Re-Casting Differential Equations in Eq. (9.6) in Terms of Supersaturation 9.1.3. Practical Limits of Model I: Multi-Component Version of the Model of Ofori-Opoku et al. 9.1.4. Practical Limits of Model II: Two-Phase Binary Alloy Model of Plapp 9.1.5. Non-Dimensional Form of the Phase Field Model Described by Eqs. (9.16) and (9.19) 9.1.6. Thin Interface Limit of Phase Field Equations 9.2. MULTI-PHASE BINARY ALLOY WITH QUADRATIC SOLID/LIQUID FREE ENERGIES 9.2.1. Solid-Liquid Phase Coexistence 9.2.2. Grand Potential Density of Phase, Multi-Phase Concentration and Susceptibility 9.2.3. Casting the Chemical Potential and Phase Field Equations in “Supersaturation Form” 9.3. MULTI-PHASE, MULTI-COMPONENT ALLOYS WITH QUADRATIC FREE ENERGIES 9.3.1. Free Energy and Susceptibility of a Single Phase 9.3.2. Vector Notation and Transformations between Concentrations and Chemical Potentials 9.3.3. Grand Potential and Concentration of a Single Phase 9.3.4. Multi-Phase Concentration, Susceptibility and Concentration Difference 9.3.5. Grand Potential Driving Force for Multi-Phase Solidification 9.3.6. Casting the Driving Force in Terms of Supersaturation 9.3.7. Final Form of Phase Field Equations in Terms of Supersaturation Driving Forces Chapter 10: Application: Phase Field Modelling of Ternary Alloys 10.1. THERMAL SPRAY COATING DEPOSITION OF WC-Co 10.2. REPRESENTATION OF THERMODYNAMIC PHASES 10.3. TABULATED TIELINES IN THE LOW SUPERSATURATION LIMIT 10.4. MOBILITY AND DIFFUSION COEFFICIENTS IN TERNARY SYSTEMS 10.5. LOW SUPERSATURATION LIMIT OF A TERNARY ALLOY IN THE GRAND POTENTIAL PHASE FIELD MODEL 10.6. PHASE FIELD PARAMETERS FOR EMULATING THE SHARP INTERFACE LIMIT 10.7. SIMULATIONS OF CARBIDE DISSOLUTION Section III Chapter 11: Interpreting Asymptotic Analyses of Phase Field Models 11.1. WHAT IS AN ASYMPTOTIC ANALYSIS OF A PHASE FIELD MODEL ABOUT? 11.2. UNDERSTANDING THE ROLE OF - AS AN ASYMPTOTIC CONVERGENCE PARAMETER 11.3. INTERPRETING THE ROLE OF - IN ASYMPTOTIC ANALYSIS AND THE NOISE AMPLITUDE Section IV Chapter 12: The Regime of Rapid Solidification Chapter 13: Modelling Continuous Growth Kinetics in the Diffuse Interface Limit of Grand Potential Phase Field Equations 13.1. REVIEW OF THE CONTINUOUS GROWTH MODEL OF RAPID SOLIDIFICATION 13.1.1. Kinetic Undercooling of the Interface in Henrian Solutions 13.2. CONTINUOUS GROWTH MODEL LIMIT OF THE GRAND POTENTIAL PHASE FIELD MODEL 13.2.1. Specializing Eq. (13.20) into the CGM Model of Eq. (13.6): Full Drag Case 13.2.2. Specializing Eq. (13.20) into the CGM Model with Zero Drag 13.2.3. Relating 1/vPF c to Interface Kinetic Coefficient B for the Case of Ideal Binary Alloys 13.3. NON-EQUILIBRIUM PARTITION COEFFICIENT k(V0) AND CHOICE OF ANTI-TRAPPING 13.3.1. Chemical Potential Jump at the Interface 13.3.2. Evaluation of ¯ F and an Implicit Equation for k(v0) from Eq. (13.31) 13.3.3. Computing k(v0) for an Ideal Binary Alloy Chapter 14: Application: Phase Field Simulations of Rapid Solidification of a Binary Alloy Section V Appendix A: Incorporating Temperature in the Grand Potential Phase Field Model Appendix B: Asymptotic Analysis of the Grand Potential Phase Field Equations B.1. LENGTH AND TIME SCALES B.2. PHASE FIELD EQUATIONS WRITTEN IN PERTURBATION VARIABLES B.2.1. Convenient Notations and Definitions B.3. FIELD EXPANSIONS AND MATCHING CONDITIONS OF OUTER/INNER SOLUTIONS B.4. OUTER EQUATIONS SATISFIED BY PHASE FIELD EQUATIONS B.5. INNER EQUATIONS SATISFIED BY PHASE FIELD EQUATIONS B.5.1. Phase Field Equation B.5.2. Chemical Potential Equation B.5.3. Constitutive Relation between c and μ B.6. ANALYSIS OF INNER EQUATIONS AND MATCHING TO THEIR OUTER FIELDS B.6.1. O(1) Phase Field Equation (B.24) B.6.2. O(1) Diffusion Equation (B.27) B.6.3. O(E) Phase Field Equation (B.25) B.6.4. O(E) Diffusion Equation (B.29) B.6.5. O(E2) Phase Field Equation (B.26) B.6.6. O(E2) Diffusion Equation (B.29) Bibliography Index