ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Quantitative Finance: Advanced Analysis with Python: A Comprehensive Guide for 2024

دانلود کتاب مالی کمی: تجزیه و تحلیل پیشرفته با پایتون: راهنمای جامع برای سال 2024

Quantitative Finance: Advanced Analysis with Python: A Comprehensive Guide for 2024

مشخصات کتاب

Quantitative Finance: Advanced Analysis with Python: A Comprehensive Guide for 2024

ویرایش:  
نویسندگان:   
سری:  
 
ناشر: Reactive Publishing 
سال نشر: 2024 
تعداد صفحات: 879 
زبان: English 
فرمت فایل : EPUB (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 2 Mb 

قیمت کتاب (تومان) : 48,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 7


در صورت تبدیل فایل کتاب Quantitative Finance: Advanced Analysis with Python: A Comprehensive Guide for 2024 به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب مالی کمی: تجزیه و تحلیل پیشرفته با پایتون: راهنمای جامع برای سال 2024 نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی درمورد کتاب به خارجی



فهرست مطالب

Title Page
Dedication
Contents
Chapter 1: Introduction to Algorithmic Trading
1.1 Definition of Algorithmic Trading
1.2 Key Benefits of Algorithmic Trading
1.3 Fundamentals of Algorithm Design
1.4 Regulatory and Ethical Considerations
Chapter 2: Understanding Financial Markets
2.1 Market Structure and Microstructure
2.2 Asset Classes and Instruments
2.3 Fundamental and Technical Analysis
2.4 Trading Economics
Chapter 3: Python for Finance
3.1 Basics of Python Programming
3.2 Data Handling and Manipulation
3.3 API Integration for Market Data
3.4 Performance and Scalability
Chapter 4: Quantitative Analysis and Modeling
4.1 Statistical Foundations
4.2 Portfolio Theory
4.3 Value at Risk (VaR)
4.4 Algorithm Evaluation Metrics
Chapter 5: Strategy Identification and Hypothesis
5.1 Identifying Market Opportunities
5.2 Strategy Hypothesis Formulation
5.3 Data Requirements and Sources
5.4 Tools for Strategy Development
Chapter 6: Building and Backtesting Strategies
6.1 Strategy Coding in Python
6.2 Backtesting Frameworks
6.3 Performance Analysis
6.4 Optimization Techniques
Chapter 7: Advanced Trading Strategies
7.1 Machine Learning for Predictive Modeling
7.2  High-Frequency Trading Algorithms
7.3 Sentiment Analysis Strategies
7.4 Multi-Asset and Cross-Asset Trading
Chapter 8: Real-Time Back testing and Paper Trading
8.1 Simulating Live Market Conditions
8.2 Refinement and Iteration
8.3 Robustness and Stability
8.4 Compliance and Reporting in Algorithmic Trading
Chapter 9: Machine Learning and AI
9.1 Deep Learning and Neural Networks
9.2 Reinforcement Learning for Trading
9.3 Natural Language Processing (NLP)
9.4 NLP Integration in Market Prediction Models
Chapter 10 : Blockchain and Cryptocurrency Markets
10.1 Fundamentals of Blockchain Technology
10.2 Trading Cryptocurrencies
10.3 Tokenization and Asset Representation
10.4 Decentralized Finance (DeFi)
Chapter 11: Quantum Computing in Finance
11.1 Quantum Computing Fundamentals
11.2 Quantum Algorithms for Optimization
11.3  Quantum Computing for Risk Analysis
11.4 Future Prospects of Quantum Computing in Trading
Epilogue
Additional Resources




نظرات کاربران