دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: Thirteenth edition, global edition نویسندگان: Render. Barry, Stair. Ralph M, Hanna. Michael E, Hale. Trevor S سری: ISBN (شابک) : 9780134543161, 0134543165 ناشر: Pearson سال نشر: 2017;2018 تعداد صفحات: 610 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 24 مگابایت
کلمات کلیدی مربوط به کتاب تجزیه و تحلیل کمی برای مدیریت: تجارت، مدیریت، کتاب های درسی، غیرداستانی
در صورت تبدیل فایل کتاب Quantitative analysis for management به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب تجزیه و تحلیل کمی برای مدیریت نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Normal 0 false false EN-US X-NONE X-NONEبرای دوره های علوم مدیریت و مدل سازی تصمیم.درک بنیادی علم مدیریت از طریق مشکلات و راه حل های دنیای واقعی< b>تحلیل کمی برای مدیریتبه خوانندگان کمک میکند تا با تأکید بر ساخت مدل، مثالهای ملموس و برنامههای رایانهای، درک واقعی از تجزیه و تحلیل کسبوکار، روشهای کمی و علم مدیریت ایجاد کنند. نویسندگان مقدمهای در دسترس برای مدلهای ریاضی ارائه میکنند و سپس خوانندگان آن مدلها را با استفاده از دستورالعملهای گامبهگام و چگونه اعمال میکنند. برای رویههای پیچیدهتر ریاضی،نسخه سیزدهمرویکردی انعطافپذیر ارائه میدهد که به خوانندگان اجازه میدهد بخشهای خاصی را بدون وقفه در جریان مطالب حذف کنند.
Normal 0 false false false EN-US X-NONE X-NONEFor courses in management science and decision modeling.Foundational understanding of management science through real-world problems and solutionsQuantitative Analysis for Managementhelps readers to develop a real-world understanding of business analytics, quantitative methods, and management science by emphasizing model building, tangible examples, and computer applications. The authors offer an accessible introduction to mathematical models and then readers apply those models using step-by-step, how-to instructions. For more intricate mathematical procedures, the13th Editionoffers a flexible approach, allowing readers to omit specific sections without interrupting the flow of the material.
Cover Title Page Copyright Page About the Authors Brief Contents Contents Preface Chapter 1: Introduction to Quantitative Analysis 1.1. What Is Quantitative Analysis? 1.2. Business Analytics 1.3. The Quantitative Analysis Approach Defining the Problem Developing a Model Acquiring Input Data Developing a Solution Testing the Solution Analyzing the Results and Sensitivity Analysis Implementing the Results The Quantitative Analysis Approach and Modeling in the Real World 1.4. How to Develop a Quantitative Analysis Model The Advantages of Mathematical Modeling Mathematical Models Categorized by Risk 1.5. The Role of Computers and Spreadsheet Models in the Quantitative Analysis Approach 1.6. Possible Problems in the Quantitative Analysis Approach Defining the Problem Developing a Model Acquiring Input Data Developing a Solution Testing the Solution Analyzing the Results 1.7. Implementation—Not Just the Final Step Lack of Commitment and Resistance to Change Lack of Commitment by Quantitative Analysts Summary Glossary Key Equations Self-Test Discussion Questions and Problems Case Study: Food and Beverages at Southwestern University Football Games Bibliography Chapter 2: Probability Concepts and Applications 2.1. Fundamental Concepts Two Basic Rules of Probability Types of Probability Mutually Exclusive and Collectively Exhaustive Events Unions and Intersections of Events Probability Rules for Unions, Intersections, and Conditional Probabilities 2.2. Revising Probabilities with Bayes’ Theorem General Form of Bayes’ Theorem 2.3. Further Probability Revisions 2.4. Random Variables 2.5. Probability Distributions Probability Distribution of a Discrete Random Variable Expected Value of a Discrete Probability Distribution Variance of a Discrete Probability Distribution Probability Distribution of a Continuous Random Variable 2.6. The Binomial Distribution Solving Problems with the Binomial Formula Solving Problems with Binomial Tables 2.7. The Normal Distribution Area Under the Normal Curve Using the Standard Normal Table Haynes Construction Company Example The Empirical Rule 2.8. The F Distribution 2.9. The Exponential Distribution Arnold’s Muffler Example 2.10. The Poisson Distribution Summary Glossary Key Equations Solved Problems Self-Test Discussion Questions and Problems Case Study: WTVX Bibliography Appendix 2.1: Derivation of Bayes’ Theorem Chapter 3: Decision Analysis 3.1. The Six Steps in Decision Making 3.2. Types of Decision-Making Environments 3.3. Decision Making Under Uncertainty Optimistic Pessimistic Criterion of Realism (Hurwicz Criterion) Equally Likely (Laplace) Minimax Regret 3.4. Decision Making Under Risk Expected Monetary Value Expected Value of Perfect Information Expected Opportunity Loss Sensitivity Analysis A Minimization Example 3.5. Using Software for Payoff Table Problems QM for Windows Excel QM 3.6. Decision Trees Efficiency of Sample Information Sensitivity Analysis 3.7. How Probability Values Are Estimated by Bayesian Analysis Calculating Revised Probabilities Potential Problem in Using Survey Results 3.8. Utility Theory Measuring Utility and Constructing a Utility Curve Utility as a Decision-Making Criterion Summary Glossary Key Equations Solved Problems Self-Test Discussion Questions and Problems Case Study: Starting Right Corporation Case Study: Toledo Leather Company Case Study: Blake Electronics Bibliography Chapter 4: Regression Models 4.1. Scatter Diagrams 4.2. Simple Linear Regression 4.3. Measuring the Fit of the Regression Model Coefficient of Determination Correlation Coefficient 4.4. Assumptions of the Regression Model Estimating the Variance 4.5. Testing the Model for Significance Triple A Construction Example The Analysis of Variance (ANOVA) Table Triple A Construction ANOVA Example 4.6. Using Computer Software for Regression Excel 2016 Excel QM QM for Windows 4.7. Multiple Regression Analysis Evaluating the Multiple Regression Model Jenny Wilson Realty Example 4.8. Binary or Dummy Variables 4.9. Model Building Stepwise Regression Multicollinearity 4.10. Nonlinear Regression 4.11. Cautions and Pitfalls in Regression Analysis Summary Glossary Key Equations Solved Problems Self-Test Discussion Questions and Problems Case Study: North–South Airline Bibliography Appendix 4.1: Formulas for Regression Calculations Chapter 5: Forecasting 5.1. Types of Forecasting Models Qualitative Models Causal Models Time-Series Models 5.2. Components of a Time-Series 5.3. Measures of Forecast Accuracy 5.4. Forecasting Models—Random Variations Only Moving Averages Weighted Moving Averages Exponential Smoothing Using Software for Forecasting Time Series 5.5. Forecasting Models—Trend and Random Variations Exponential Smoothing with Trend Trend Projections 5.6. Adjusting for Seasonal Variations Seasonal Indices Calculating Seasonal Indices with No Trend Calculating Seasonal Indices with Trend 5.7. Forecasting Models—Trend, Seasonal, and Random Variations The Decomposition Method Software for Decomposition Using Regression with Trend and Seasonal Components 5.8. Monitoring and Controlling Forecasts Adaptive Smoothing Summary Glossary Key Equations Solved Problems Self-Test Discussion Questions and Problems Case Study: Forecasting Attendance at SWU Football Games Case Study: Forecasting Monthly Sales Bibliography Chapter 6 Inventory Control Models 6.1. Importance of Inventory Control Decoupling Function Storing Resources Irregular Supply and Demand Quantity Discounts Avoiding Stockouts and Shortages 6.2. Inventory Decisions 6.3. Economic Order Quantity: Determining How Much to Order Inventory Costs in the EOQ Situation Finding the EOQ Sumco Pump Company Example Purchase Cost of Inventory Items Sensitivity Analysis with the EOQ Model 6.4. Reorder Point: Determining When to Order 6.5. EOQ Without the Instantaneous Receipt Assumption Annual Carrying Cost for Production Run Model Annual Setup Cost or Annual Ordering Cost Determining the Optimal Production Quantity Brown Manufacturing Example 6.6. Quantity Discount Models Brass Department Store Example 6.7. Use of Safety Stock 6.8. Single-Period Inventory Models Marginal Analysis with Discrete Distributions Café du Donut Example Marginal Analysis with the Normal Distribution Newspaper Example 6.9. ABC Analysis 6.10. Dependent Demand: The Case for Material Requirements Planning Material Structure Tree Gross and Net Material Requirements Plans Two or More End Products 6.11. Just-In-Time Inventory Control 6.12. Enterprise Resource Planning Summary Glossary Key Equations Solved Problems Self-Test Discussion Questions and Problems Case Study: Martin-Pullin Bicycle Corporation Bibliography Appendix 6.1: Inventory Control with QM for Windows Chapter 7: Linear Programming Models: Graphical and Computer Methods 7.1. Requirements of a Linear Programming Problem 7.2. Formulating LP Problems Flair Furniture Company 7.3. Graphical Solution to an LP Problem Graphical Representation of Constraints Isoprofit Line Solution Method Corner Point Solution Method Slack and Surplus 7.4. Solving Flair Furniture’s LP Problem Using QM for Windows, Excel 2016, and Excel QM Using QM for Windows Using Excel’s Solver Command to Solve LP Problems Using Excel QM 7.5. Solving Minimization Problems Holiday Meal Turkey Ranch 7.6. Four Special Cases in LP No Feasible Solution Unboundedness Redundancy Alternate Optimal Solutions 7.7. Sensitivity Analysis High Note Sound Company Changes in the Objective Function Coefficient QM for Windows and Changes in Objective Function Coefficients Excel Solver and Changes in Objective Function Coefficients Changes in the Technological Coefficients Changes in the Resources or Right-Hand-Side Values QM for Windows and Changes in Right-Hand- Side Values Excel Solver and Changes in Right-Hand-Side Values Summary Glossary Solved Problems Self-Test Discussion Questions and Problems Case Study: Mexicana Wire Winding, Inc. Bibliography Chapter 8: Linear Programming Applications 8.1. Marketing Applications Media Selection Marketing Research 8.2. Manufacturing Applications Production Mix Production Scheduling 8.3. Employee Scheduling Applications Labor Planning 8.4. Financial Applications Portfolio Selection Truck Loading Problem 8.5. Ingredient Blending Applications Diet Problems Ingredient Mix and Blending Problems 8.6. Other Linear Programming Applications Summary Self-Test Problems Case Study: Cable & Moore Bibliography Chapter 9: Transportation, Assignment, and Network Models 9.1. The Transportation Problem Linear Program for the Transportation Example Solving Transportation Problems Using Computer Software A General LP Model for Transportation Problems Facility Location Analysis 9.2. The Assignment Problem Linear Program for Assignment Example 9.3. The Transshipment Problem Linear Program for Transshipment Example 9.4. Maximal-Flow Problem Example 9.5. Shortest-Route Problem 9.6. Minimal-Spanning Tree Problem Summary Glossary Solved Problems Self-Test Discussion Questions and Problems Case Study: Andrew–Carter, Inc. Case Study: Northeastern Airlines Case Study: Southwestern University Traffic Problems Bibliography Appendix 9.1: Using QM for Windows Chapter 10: Integer Programming, Goal Programming, and Nonlinear Programming 10.1. Integer Programming Harrison Electric Company Example of Integer Programming Using Software to Solve the Harrison Integer Programming Problem Mixed-Integer Programming Problem Example 10.2. Modeling with 0–1 (Binary) Variables Capital Budgeting Example Limiting the Number of Alternatives Selected Dependent Selections Fixed-Charge Problem Example Financial Investment Example 10.3. Goal Programming Example of Goal Programming: Harrison Electric Company Revisited Extension to Equally Important Multiple Goals Ranking Goals with Priority Levels Goal Programming with Weighted Goals 10.4. Nonlinear Programming Nonlinear Objective Function and Linear Constraints Both Nonlinear Objective Function and Nonlinear Constraints Linear Objective Function with Nonlinear Constraints Summary Glossary Solved Problems Self-Test Discussion Questions and Problems Case Study: Schank Marketing Research Case Study: Oakton River Bridge Bibliography Chapter 11: Project Management 11.1. PERT/CPM General Foundry Example of PERT/CPM Drawing the PERT/CPM Network Activity Times How to Find the Critical Path Probability of Project Completion What PERT Was Able to Provide Using Excel QM for the General Foundry Example Sensitivity Analysis and Project Management 11.2. PERT/Cost Planning and Scheduling Project Costs: Budgeting Process Monitoring and Controlling Project Costs 11.3. Project Crashing General Foundry Example Project Crashing with Linear Programming 11.4. Other Topics in Project Management Subprojects Milestones Resource Leveling Software Summary Glossary Key Equations Solved Problems Self-Test Discussion Questions and Problems Case Study: Southwestern University Stadium Construction Case Study: Family Planning Research Center of Nigeria Bibliography Appendix 11.1: Project Management with QM for Windows Chapter 12: Waiting Lines and Queuing Theory Models 12.1. Waiting Line Costs Three Rivers Shipping Company Example 12.2. Characteristics of a Queuing System Arrival Characteristics Waiting Line Characteristics Service Facility Characteristics Identifying Models Using Kendall Notation 12.3. Single-Channel Queuing Model with Poisson Arrivals and Exponential Service Times (M/M /1) Assumptions of the Model Queuing Equations Arnold’s Muffler Shop Case Enhancing the Queuing Environment 12.4. Multichannel Queuing Model with Poisson Arrivals and Exponential Service Times (M/M/m) Equations for the Multichannel Queuing Model Arnold’s Muffler Shop Revisited 12.5. Constant Service Time Model (M/D/1) Equations for the Constant Service Time Model Garcia-Golding Recycling, Inc. 12.6. Finite Population Model (M/M/1 with Finite Source) Equations for the Finite Population Model Department of Commerce Example 12.7. Some General Operating Characteristic Relationships 12.8. More Complex Queuing Models and the Use of Simulation Summary Glossary Key Equations Solved Problems Self-Test Discussion Questions and Problems Case Study: New England Foundry Case Study: Winter Park Hotel Bibliography Appendix 12.1: Using QM for Windows Chapter 13: Simulation Modeling 13.1. Advantages and Disadvantages of Simulation 13.2. Monte Carlo Simulation Harry’s Auto Tire Example Using QM for Windows for Simulation Simulation with Excel Spreadsheets 13.3. Simulation and Inventory Analysis Simkin’s Hardware Store Analyzing Simkin’s Inventory Costs 13.4. Simulation of a Queuing Problem Port of New Orleans Using Excel to Simulate the Port of New Orleans Queuing Problem 13.5. Simulation Model for a Maintenance Policy Three Hills Power Company Cost Analysis of the Simulation 13.6. Other Simulation Issues Two Other Types of Simulation Models Verification and Validation Role of Computers in Simulation Summary Glossary Solved Problems Self-Test Discussion Questions and Problems Case Study: Alabama Airlines Case Study: Statewide Development Corporation Case Study: FB Badpoore Aerospace Bibliography Chapter 14: Markov Analysis 14.1. States and State Probabilities The Vector of State Probabilities for Grocery Store Example 14.2. Matrix of Transition Probabilities Transition Probabilities for Grocery Store Example 14.3. Predicting Future Market Shares 14.4. Markov Analysis of Machine Operations 14.5. Equilibrium Conditions 14.6. Absorbing States and the Fundamental Matrix: Accounts Receivable Application Summary Glossary Key Equations Solved Problems Self-Test Discussion Questions and Problems Case Study: Rentall Trucks Bibliography Appendix 14.1: Markov Analysis with QM for Windows Appendix 14.2: Markov Analysis with Excel Chapter 15: Statistical Quality Control 15.1. Defining Quality and TQM 15.2. Statistical Process Control Variability in the Process 15.3. Control Charts for Variables The Central Limit Theorem Setting x--Chart Limits Setting Range Chart Limits 15.4. Control Charts for Attributes p-Charts c-Charts Summary Glossary Key Equations Solved Problems Self-Test Discussion Questions and Problems Bibliography Appendix 15.1: Using QM for Windows for SPC Appendices Appendix A: Areas Under the Standard Normal Curve Appendix B: Binomial Probabilities Appendix C: Values of e L for Use in the Poisson Distribution Appendix D: F Distribution Values Appendix E: Using POM-QM for Windows Appendix F: Using Excel QM and Excel Add-Ins Appendix G: Solutions to Selected Problems Appendix H: Solutions to Self-Tests Index Module 1: Analytic Hierarchy Process M1.1. Multifactor Evaluation Process M1.2. Analytic Hierarchy Process Judy Grim’s Computer Decision Using Pairwise Comparisons Evaluations for Hardware Determining the Consistency Ratio Evaluations for the Other Factors Determining Factor Weights Overall Ranking Using the Computer to Solve Analytic Hierarchy Process Problems M1.3. Comparison of Multifactor Evaluation and Analytic Hierarchy Processes Summary Glossary Key Equations Solved Problems Self-Test Discussion Questions and Problems Bibliography Appendix M1.1: Using Excel for the Analytic Hierarchy Process Module 2: Dynamic Programming M2.1. Shortest-Route Problem Solved Using Dynamic Programming M2.2. Dynamic Programming Terminology M2.3. Dynamic Programming Notation M2.4. Knapsack Problem Types of Knapsack Problems Roller’s Air Transport Service Problem Summary Glossary Key Equations Solved Problem Self-Test Discussion Questions and Problems Case Study: United Trucking Bibliography Module 3: Decision Theory and the Normal Distribution M3.1. Break-Even Analysis and the Normal Distribution Barclay Brothers Company’s New Product Decision Probability Distribution of Demand Using Expected Monetary Value to Make a Decision M3.2. Expected Value of Perfect Information and the Normal Distribution Opportunity Loss Function Expected Opportunity Loss Summary Glossary Key Equations Solved Problems Self-Test Discussion Questions and Problems Bibliography Appendix M3.1: Derivation of the Break-Even Point Appendix M3.2: Unit Normal Loss Integral Module 4: Game Theory M4.1. Language of Games M4.2. The Minimax Criterion M4.3. Pure Strategy Games M4.4. Mixed Strategy Games M4.5. Dominance Summary Glossary Solved Problems Self-Test Discussion Questions and Problems Bibliography Module 5: Mathematical Tools: Determinants and Matrices M5.1. Matrices and Matrix Operations Matrix Addition and Subtraction Matrix Multiplication Matrix Notation for Systems of Equations Matrix Transpose M5.2. Determinants, Cofactors, and Adjoints Determinants Matrix of Cofactors and Adjoint M5.3. Finding the Inverse of a Matrix Summary Glossary Key Equations Self-Test Discussion Questions and Problems Bibliography Appendix M5.1: Using Excel for Matrix Calculations Module 6: Calculus-Based Optimization M6.1. Slope of a Straight Line M6.2. Slope of a Nonlinear Function M6.3. Some Common Derivatives Second Derivatives M6.4. Maximum and Minimum M6.5. Applications Economic Order Quantity Total Revenue Summary Glossary Key Equations Solved Problems Self-Test Discussion Questions and Problems Bibliography Module 7: Linear Programming: The Simplex Method M7.1. How to Set Up the Initial Simplex Solution Converting the Constraints to Equations Finding an Initial Solution Algebraically The First Simplex Tableau M7.2. Simplex Solution Procedures The Second Simplex Tableau Interpreting the Second Tableau The Third Simplex Tableau Review of Procedures for Solving LP Maximization Problems M7.3. Surplus and Artificial Variables Surplus Variables Artificial Variables Surplus and Artificial Variables in the Objective Function M7.4. Solving Minimization Problems The Muddy River Chemical Corporation Example Graphical Analysis Converting the Constraints and Objective Function Rules of the Simplex Method for Minimization Problems First Simplex Tableau for the Muddy River Chemical Corporation Problem Developing a Second Tableau Developing a Third Tableau Fourth Tableau for the Muddy River Chemical Corporation Problem Review of Procedures for Solving LP Minimization Problems M7.5. Special Cases Infeasibility Unbounded Solutions Degeneracy More Than One Optimal Solution M7.6. Sensitivity Analysis with the Simplex Tableau High Note Sound Company Revisited Changes in the Objective Function Coefficients Changes in Resources or RHS Values M7.7. The Dual Dual Formulation Procedures Solving the Dual of the High Note Sound Company Problem M7.8. Karmarkar’s Algorithm Summary Glossary Key Equations Solved Problems Self-Test Discussion Questions and Problems Bibliography Module 8: Transportation, Assignment, and Network Algorithms M8.1. The Transportation Algorithm Developing an Initial Solution: Northwest Corner Rule Stepping-Stone Method: Finding a Least-Cost Solution Special Situations with the Transportation Algorithm Unbalanced Transportation Problems Degeneracy in Transportation Problems More Than One Optimal Solution Maximization Transportation Problems Unacceptable or Prohibited Routes Other Transportation Methods M8.2. The Assignment Algorithm The Hungarian Method (Flood’s Technique) Making the Final Assignment Special Situations with the Assignment Algorithm Unbalanced Assignment Problems Maximization Assignment Problems M8.3. Maximal-Flow Problem Maximal-Flow Technique M8.4. Shortest-Route Problem Shortest-Route Technique Summary Glossary Solved Problems Self-Test Discussion Questions and Problems Bibliography