ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Python Tools for Data Scientists Pocket Primer

دانلود کتاب Python Tools for Data Scientists Pocket Primer

Python Tools for Data Scientists Pocket Primer

مشخصات کتاب

Python Tools for Data Scientists Pocket Primer

ویرایش:  
نویسندگان:   
سری:  
ISBN (شابک) : 1683928237, 9781683928232 
ناشر: Mercury Learning and Information 
سال نشر: 2022 
تعداد صفحات: 300
[323] 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 7 Mb 

قیمت کتاب (تومان) : 49,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 2


در صورت تبدیل فایل کتاب Python Tools for Data Scientists Pocket Primer به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب Python Tools for Data Scientists Pocket Primer نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب Python Tools for Data Scientists Pocket Primer

این کتاب به‌عنوان بخشی از پرفروش‌ترین سری‌های اولیه جیبی، به‌منظور ارائه مقدمه‌ای کامل از ابزارهای متعدد پایتون برای دانشمندان داده طراحی شده است. این کتاب ویژگی‌های NumPy و Pandas، نحوه نوشتن عبارات منظم و نحوه انجام وظایف پاکسازی داده را پوشش می‌دهد. این شامل فصل های جداگانه ای در مورد تجسم داده ها و کار با Sklearn و SciPy است. فایل های همراه با کد منبع در دسترس هستند. ویژگی‌ها: Python، NumPy، Sklearn، SciPy و awk را معرفی می‌کند. وظایف پاکسازی داده‌ها و تجسم داده‌ها را پوشش می‌دهد. دارای نمونه‌های کد متعدد در سراسر شامل فایل‌های همراه با کد منبع


توضیحاتی درمورد کتاب به خارجی

As part of the best-selling Pocket Primerseries, this book is designed to provide a thorough introduction to numerous Python tools for data scientists. The book covers features of NumPy and Pandas, how to write regular expressions, and how to perform data cleaning tasks. It includes separate chapters on data visualization and working with Sklearn and SciPy. Companion files with source code are available. FEATURES: Introduces Python, NumPy, Sklearn, SciPy, and awk Covers data cleaning tasks and data visualization Features numerous code samples throughout Includes companion files with source code



فهرست مطالب

Cover
Half-Title
Title
Copyright
Dedication
Contents
Preface
Chapter 1: Introduction to Python
	Tools for Python
		easy_install and pip
		virtualenv
	Python Installation
	Setting the PATH Environment Variable (Windows Only)
	Launching Python on Your Machine
		The Python Interactive Interpreter
	Python Identifiers
	Lines, Indentations, and Multi-Lines
	Quotation and Comments in Python
	Saving Your Code in a Module
	Some Standard Modules in Python
	The help() and dir() Functions
	Compile Time and Runtime Code Checking
	Simple Data Types in Python
	Working with Numbers
		Working with Other Bases
		The chr() Function
		The round() Function in Python
		Formatting Numbers in Python
	Unicode and UTF-8
	Working with Unicode
		Listing 1.1: Unicode1.py
	Working with Strings
		Comparing Strings
		Listing 1.2: Compare.py
		Formatting Strings in Python
	Uninitialized Variables and the Value None in Python
	Slicing and Splicing Strings
		Testing for Digits and Alphabetic Characters
		Listing 1.3: CharTypes.py
	Search and Replace a String in Other Strings
		Listing 1.4: FindPos1.py
		Listing 1.5: Replace1.py
	Remove Leading and Trailing Characters
		Listing 1.6: Remove1.py
	Printing Text without NewLine Characters
	Text Alignment
	Working with Dates
		Listing 1.7: Datetime2.py
		Listing 1.8: datetime2.out
		Converting Strings to Dates
		Listing 1.9: String2Date.py
	Exception Handling in Python
		Listing 1.10: Exception1.py
	Handling User Input
		Listing 1.11: UserInput1.py
		Listing 1.12: UserInput2.py
		Listing 1.13: UserInput3.py
	Command-Line Arguments
		Listing 1.14: Hello.py
	Summary
Chapter 2: Introduction to NumPy
	What is NumPy?
		Useful NumPy Features
	What are NumPy Arrays?
		Listing 2.1: nparray1.py
	Working with Loops
		Listing 2.2: loop1.py
	Appending Elements to Arrays (1)
		Listing 2.3: append1.py
	Appending Elements to Arrays (2)
		Listing 2.4: append2.py
	Multiplying Lists and Arrays
		Listing 2.5: multiply1.py
	Doubling the Elements in a List
		Listing 2.6: double_list1.py
	Lists and Exponents
		Listing 2.7: exponent_list1.py
	Arrays and Exponents
		Listing 2.8: exponent_array1.py
	Math Operations and Arrays
		Listing 2.9: mathops_array1.py
	Working with “−1” Sub-ranges With Vectors
		Listing 2.10: npsubarray2.py
	Working with “−1” Sub-ranges with Arrays
		Listing 2.11: np2darray2.py
	Other Useful NumPy Methods
	Arrays and Vector Operations
		Listing 2.12: array_vector.py
	NumPy and Dot Products (1)
		Listing 2.13: dotproduct1.py
	NumPy and Dot Products (2)
		Listing 2.14: dotproduct2.py
	NumPy and the Length of Vectors
		Listing 2.15: array_norm.py
	NumPy and Other Operations
		Listing 2.16: otherops.py
	NumPy and the reshape() Method
		Listing 2.17: numpy_reshape.py
	Calculating the Mean and Standard Deviation
		Listing 2.18: sample_mean_std.py
	Code Sample with Mean and Standard Deviation
		Listing 2.19: stat_values.py
		Trimmed Mean and Weighted Mean
	Working with Lines in the Plane (Optional)
	Plotting Randomized Points with NumPy and Matplotlib
		Listing 2.20: np_plot.py
	Plotting a Quadratic with NumPy and Matplotlib
		Listing 2.21: np_plot_quadratic.py
	What is Linear Regression?
		What is Multivariate Analysis?
		What about Non-Linear Datasets?
	The MSE (Mean Squared Error) Formula
		Other Error Types
		Non-Linear Least Squares
	Calculating the MSE Manually
	Find the Best-Fitting Line in NumPy
		Listing 2.22: find_best_fit.py
	Calculating MSE by Successive Approximation (1)
		Listing 2.23: plain_linreg1.py
	Calculating MSE by Successive Approximation (2)
		Listing 2.24: plain_linreg2.py
	Google Colaboratory
		Uploading CSV Files in Google Colaboratory
		Listing 2.25: upload_csv_file.ipynb
	Summary
Chapter 3: Introduction to Pandas
	What is Pandas?
		Pandas Options and Settings
		Pandas Data Frames
		Data Frames and Data Cleaning Tasks
		Alternatives to Pandas
	A Pandas Data Frame with a NumPy Example
		Listing 3.1: pandas_df.py
	Describing a Pandas Data Frame
		Listing 3.2: pandas_df_describe.py
	Pandas Boolean Data Frames
		Listing 3.3: pandas_boolean_df.py
		Transposing a Pandas Data Frame
	Pandas Data Frames and Random Numbers
		Listing 3.4: pandas_random_df.py
		Listing 3.5: pandas_combine_df.py
	Reading CSV Files in Pandas
		Listing 3.6: sometext.txt
		Listing 3.7: read_csv_file.py
	The loc() and iloc() Methods in Pandas
	Converting Categorical Data to Numeric Data
		Listing 3.8: cat2numeric.py
		Listing 3.9: shirts.csv
		Listing 3.10: shirts.py
	Matching and Splitting Strings in Pandas
		Listing 3.11: shirts_str.py
	Converting Strings to Dates in Pandas
		Listing 3.12: string2date.py
	Merging and Splitting Columns in Pandas
		Listing 3.13: employees.csv
		Listing 3.14: emp_merge_split.py
	Combining Pandas Data Frames
		Listing 3.15: concat_frames.py
	Data Manipulation with Pandas Data Frames (1)
		Listing 3.16: pandas_quarterly_df1.py
	Data Manipulation with Pandas Data Frames (2)
		Listing 3.17: pandas_quarterly_df2.py
	Data Manipulation with Pandas Data Frames (3)
		Listing 3.18: pandas_quarterly_df3.py
	Pandas Data Frames and CSV Files
		Listing 3.19: weather_data.py
		Listing 3.20: people.csv
		Listing 3.21: people_pandas.py
	Managing Columns in Data Frames
		Switching Columns
		Appending Columns
		Deleting Columns
		Inserting Columns
		Scaling Numeric Columns
		Listing 3.22: numbers.csv
		Listing 3.23: scale_columns.py
	Managing Rows in Pandas
		Selecting a Range of Rows in Pandas
		Listing 3.24: duplicates.csv
		Listing 3.25: row_range.py
		Finding Duplicate Rows in Pandas
		Listing 3.26: duplicates.py
		Listing 3.27: drop_duplicates.py
		Inserting New Rows in Pandas
		Listing 3.28: emp_ages.csv
		Listing 3.29: insert_row.py
	Handling Missing Data in Pandas
		Listing 3.30: employees2.csv
		Listing 3.31: missing_values.py
		Multiple Types of Missing Values
		Listing 3.32: employees3.csv
		Listing 3.33: missing_multiple_types.py
		Test for Numeric Values in a Column
		Listing 3.34: test_for_numeric.py
		Replacing NaN Values in Pandas
		Listing 3.35: missing_fill_drop.py
	Sorting Data Frames in Pandas
		Listing 3.36: sort_df.py
	Working with groupby() in Pandas
		Listing 3.37: groupby1.py
	Working with apply() and mapapply() in Pandas
		Listing 3.38: apply1.py
		Listing 3.39: apply2.py
		Listing 3.40: mapapply1.py
		Listing 3.41: mapapply2.py
	Handling Outliers in Pandas
		Listing 3.42: outliers_zscores.py
	Pandas Data Frames and Scatterplots
		Listing 3.43: pandas_scatter_df.py
	Pandas Data Frames and Simple Statistics
		Listing 3.44: housing.csv
		Listing 3.45: housing_stats.py
	Aggregate Operations in Pandas Data Frames
		Listing 3.46: aggregate1.py
	Aggregate Operations with the titanic.csv Dataset
		Listing 3.47: aggregate2.py
	Save Data Frames as CSV Files and Zip Files
		Listing 3.48: save2csv.py
	Pandas Data Frames and Excel Spreadsheets
		Listing 3.49: write_people_xlsx.py
		Listing 3.50: read_people_xslx.py
	Working with JSON-based Data
		Python Dictionary and JSON
		Listing 3.51: dict2json.py
		Python, Pandas, and JSON
		Listing 3.52: pd_python_json.py
	Useful One-line Commands in Pandas
	What is Method Chaining?
		Pandas and Method Chaining
	Pandas Profiling
		Listing 3.53: titanic.csv
		Listing 3.54: profile_titanic.py
	Summary
Chapter 4: Working with Sklearn and Scipy
	What is Sklearn?
		Sklearn Features
	The Digits Dataset in Sklearn
		Listing 4.1: load_digits1.py
		Listing 4.2: load_digits2.py
		Listing 4.3: sklearn_digits.py
	The train_test_split() Class in Sklearn
		Selecting Columns for X and y
	What is Feature Engineering?
	The Iris Dataset in Sklearn (1)
		Listing 4.4: sklearn_iris1.py
		Sklearn, Pandas, and the Iris Dataset
		Listing 4.5: pandas_iris.py
	The Iris Dataset in Sklearn (2)
		Listing 4.6: sklearn_iris2.py
	The Faces Dataset in Sklearn (Optional)
		Listing 4.7: sklearn_faces.py
	What is SciPy?
		Installing SciPy
	Permutations and Combinations in SciPy
		Listing 4.8: scipy_perms.py
		Listing 4.9: scipy_combinatorics.py
	Calculating Log Sums
		Listing 4.10: scipy_matrix_inv.py
	Calculating Polynomial Values
		Listing 4.11: scipy_poly.py
	Calculating the Determinant of a Square Matrix
		Listing 4.12: scipy_determinant.py
	Calculating the Inverse of a Matrix
		Listing 4.13: scipy_matrix_inv.py
	Calculating Eigenvalues and Eigenvectors
		Listing 4.14: scipy_eigen.py
	Calculating Integrals (Calculus)
		Listing 4.15: scipy_integrate.py
	Calculating Fourier Transforms
		Listing 4.16: scipy_fourier.py
	Flipping Images in SciPy
		Listing 4.17: scipy_flip_image.py
	Rotating Images in SciPy
		Listing 4.18: scipy_rotate_image.py
	Google Colaboratory
		Uploading CSV Files in Google Colaboratory
		Listing 4.19: upload_csv_file.ipynb
	Summary
Chapter 5: Data Cleaning Tasks
	What is Data Cleaning?
		Data Cleaning for Personal Titles
	Data Cleaning in SQL
		Replace NULL with 0
		Replace NULL Values with the Average Value
		Listing 5.1: replace_null_values.sql
	Replace Multiple Values with a Single Value
		Listing 5.2: reduce_values.sql
	Handle Mismatched Attribute Values
		Listing 5.3: type_mismatch.sql
	Convert Strings to Date Values
		Listing 5.4: str_to_date.sql
	Data Cleaning from the Command Line (optional)
		Working with the sed Utility
		Listing 5.5: delimiter1.txt
		Listing 5.6: delimiter1.sh
	Working with Variable Column Counts
		Listing 5.7: variable_columns.csv
		Listing 5.8: variable_columns.sh
		Listing 5.9: variable_columns2.sh
	Truncating Rows in CSV Files
		Listing 5.10: variable_columns3.sh
	Generating Rows with Fixed Columns with the awk Utility
		Listing 5.11: FixedFieldCount1.sh
		Listing 5.12: employees.txt
		Listing 5.13: FixedFieldCount2.sh
	Converting Phone Numbers
		Listing 5.14: phone_numbers.txt
		Listing 5.15: phone_numbers.sh
	Converting Numeric Date Formats
		Listing 5.16: dates.txt
		Listing 5.17: dates.sh
		Listing 5.18: dates2.sh
	Converting Alphabetic Date Formats
		Listing 5.19: dates2.txt
		Listing 5.20: dates3.sh
	Working with Date and Time Date Formats
		Listing 5.21: date-times.txt
		Listing 5.22: date-times-padded.sh
	Working with Codes, Countries, and Cities
		Listing 5.23: country_codes.csv
		Listing 5.24: add_country_codes.sh
		Listing 5.25: countries_cities.csv
		Listing 5.26: split_countries_codes.sh
		Listing 5.27: countries_cities2.csv
		Listing 5.28: split_countries_codes2.sh
	Data Cleaning on a Kaggle Dataset
		Listing 5.29: convert_marketing.sh
	Summary
Chapter 6: Data Visualization
	What is Data Visualization?
		Types of Data Visualization
	What is Matplotlib?
	Diagonal Lines in Matplotlib
		Listing 6.1: diagonallines.py
	A Colored Grid in Matplotlib
		Listing 6.2: plotgrid2.py
	Randomized Data Points in Matplotlib
		Listing 6.3: lin_plot_reg.py
	A Histogram in Matplotlib
		Listing 6.4: histogram1.py
	A Set of Line Segments in Matplotlib
		Listing 6.5: line_segments.py
	Plotting Multiple Lines in Matplotlib
		Listing 6.6: plt_array2.py
	Trigonometric Functions in Matplotlib
		Listing 6.7: sincos.py
	Display IQ Scores in Matplotlib
		Listing 6.8: iq_scores.py
	Plot a Best-Fitting Line in Matplotlib
		Listing 6.9: plot_best_fit.py
	The Iris Dataset in SkLearn
		Listing 6.10: sklearn_iris1.py
		SkLearn, Pandas, and the Iris Dataset
		Listing 6.11: pandas_iris.py
	Working with Seaborn
		Features of Seaborn
	Seaborn Built-in Datasets
		Listing 6.12: seaborn_tips.py
	The Iris Dataset in Seaborn
		Listing 6.13: seaborn_iris.py
	The Titanic Dataset in Seaborn
		Listing 6.14: seaborn_titanic_plot.py
	Extracting Data from the Titanic Dataset in Seaborn (1)
		Listing 6.15: seaborn_titanic.py
	Extracting Data from the Titanic Dataset in Seaborn (2)
		Listing 6.16: seaborn_titanic2.py
	Visualizing a Pandas Dataset in Seaborn
		Listing 6.17: pandas_seaborn.py
	Data Visualization in Pandas
		Listing 6.18: pandas_viz1.py
	What is Bokeh?
		Listing 6.19: bokeh_trig.py
	Summary
Appendix A: Working with Data
	What are Datasets?
		Data Preprocessing
	Data Types
	Preparing Datasets
		Discrete Data vs. Continuous Data
		“Binning” Continuous Data
		Scaling Numeric Data via Normalization
		Scaling Numeric Data via Standardization
		What to Look for in Categorical Data
		Mapping Categorical Data to Numeric Values
		Working with Dates
		Working with Currency
	Missing Data, Anomalies, and Outliers
		Missing Data
		Anomalies and Outliers
		Outlier Detection
		What is Data Drift?
	What is Imbalanced Classification?
	What is SMOTE?
		SMOTE Extensions
	Analyzing Classifiers (Optional)
		What is LIME?
		What is ANOVA?
	The Bias-Variance Trade-Off
		Types of Bias in Data
	Summary
Appendix B: Working with awk
	The awk Command
		Built-in Variables that Control awk
		How Does the awk Command Work?
	Aligning Text with the printf Statement
		Listing B.1: columns2.txt
		Listing B.2: AlignColumns1.sh
	Conditional Logic and Control Statements
		The while Statement
		A for loop in awk
		Listing B.3: Loop.sh
		A for loop with a break Statement
		The next and continue Statements
	Deleting Alternate Lines in Datasets
		Listing B.4: linepairs.csv
		Listing B.5: deletelines.sh
	Merging Lines in Datasets
		Listing B.6: columns.txt
		Listing B.7: ColumnCount1.sh
		Printing File Contents as a Single Line
		Joining Groups of Lines in a Text File
		Listing B.8: digits.txt
		Listing B.9: digits.sh
		Joining Alternate Lines in a Text File
		Listing B.10: columns2.txt
		Listing B.11: JoinLines.sh
		Listing B.12: JoinLines2.sh
		Listing B.13: JoinLines2.sh
	Matching with Meta Characters and Character Sets
		Listing B.14: Patterns1.sh
		Listing B.15: columns3.txt
		Listing B.16: MatchAlpha1.sh
	Printing Lines Using Conditional Logic
		Listing B.17: products.txt
	Splitting Filenames with awk
		Listing B.18: SplitFilename2.sh
	Working with Postfix Arithmetic Operators
		Listing B.19: mixednumbers.txt
		Listing B.20: AddSubtract1.sh
	Numeric Functions in awk
	One Line awk Commands
	Useful Short awk Scripts
		Listing B.21: data.txt
	Printing the Words in a Text String in awk
		Listing B.22: Fields2.sh
	Count Occurrences of a String in Specific Rows
		Listing B.23: data1.csv
		Listing B.24: data2.csv
		Listing B.25: checkrows.sh
	Printing a String in a Fixed Number of Columns
		Listing B.26: FixedFieldCount1.sh
	Printing a Dataset in a Fixed Number of Columns
		Listing B.27: VariableColumns.txt
		Listing B.28: Fields3.sh
	Aligning Columns in Datasets
		Listing B.29: mixed-data.csv
		Listing B.30: mixed-data.sh
	Aligning Columns and Multiple Rows in Datasets
		Listing B.31: mixed-data2.csv
		Listing B.32: aligned-data2.csv
		Listing B.33: mixed-data2.sh
	Removing a Column from a Text File
		Listing B.34: VariableColumns.txt
		Listing B.35: RemoveColumn.sh
	Subsets of Column-aligned Rows in Datasets
		Listing B.36: sub-rows-cols.txt
		Listing B.37: sub-rows-cols.sh
	Counting Word Frequency in Datasets
		Listing B.38: WordCounts1.sh
		Listing B.39: WordCounts2.sh
		Listing B.40: columns4.txt
	Displaying Only “Pure” Words in a Dataset
		Listing B.41: onlywords.sh
	Working with Multi-line Records in awk
		Listing B.42: employees.txt
		Listing B.43: employees.sh
	A Simple Use Case
		Listing B.44: quotes3.csv
		Listing B.45 delim1.sh
	Another Use Case
		Listing B.46: dates2.csv
		Listing B.47: string2date2.sh
	Summary
Index




نظرات کاربران