ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Python Programming: An Introductory Guide for Accounting & Finance

دانلود کتاب برنامه نویسی پایتون: راهنمای مقدماتی برای حسابداری و امور مالی

Python Programming: An Introductory Guide for Accounting & Finance

مشخصات کتاب

Python Programming: An Introductory Guide for Accounting & Finance

ویرایش:  
نویسندگان:   
سری:  
 
ناشر:  
سال نشر: 2024 
تعداد صفحات: 660
[693] 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 32 Mb 

قیمت کتاب (تومان) : 54,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 5


در صورت تبدیل فایل کتاب Python Programming: An Introductory Guide for Accounting & Finance به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب برنامه نویسی پایتون: راهنمای مقدماتی برای حسابداری و امور مالی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی درمورد کتاب به خارجی



فهرست مطالب

PREFACE
	CHAPTER 1: THE INTERSECTION OF
	FINANCE AND MACHINE LEARNING
	The Digital Revolution and the Rise of Quantitative Analysis
	Machine Learning in Action: Transforming Analysis and Decision-Making
	The Cornerstones of Traditional Financial Analysis
	Introduction of Statistical Methods
	Inferential Statistics: Beyond the Data
	Predictive Modelling: Forecasting the Future
	Time Series Analysis: A Special Mention
	The Role of Statistical Software
	Machine Learning: A Paradigm Shift
	The Benefits of Machine Learning in Financial Planning and Analysis
	Increased Accuracy of Predictions
	Enhanced Efficiency in Data Processing
	Benefits of Enhanced Data Processing Efficiency
	Bias in Machine Learning Algorithms
	CHAPTER 2: FUNDAMENTALS
	OF MACHINE LEARNING
	Machine Learning Workflow
	Key Concepts and Terminologies
	The Significance of ML in Finance
	Supervised Learning Algorithms: Precision in Prediction
	Unsupervised Learning Algorithms: Discovering Hidden Patterns
	Reinforcement Learning Algorithms: Learning Through Interaction
	Hybrid and Advanced Algorithms: Blending Techniques for Enhanced Performance
	Unsupervised Learning
	Principal Algorithms and Their Applications
	Reinforcement Learning
	Dataset and Features
	Feature Engineering in Finance:
	Overfitting and Underfitting: Balancing the Scales in Financial Machine Learning Models
	Understanding Machine Learning Workflows: A Financial Analyst's Guide
	Data Collection and Cleaning: Pillars of Machine Learning in Finance
	Model Selection and Training: The Heartbeat of Financial Machine Learning
	Evaluation and Iteration: Refining the Machine Learning Models for Finance
	CHAPTER 3: PYTHON PROGRAMMING FOR FINANCIAL ANALYSIS
	Introduction to Python
	Basic Python Syntax and Structures for Financial Analysis
	NumPy and Pandas for Data Manipulation
	-	Getting Started with matplotlib:
	seaborn: Enhancing Data Visualization with Ease
	-	Visualizing Financial Data with seaborn:
	Choosing Between matplotlib and seaborn
	scikit-learn for Machine Learning
	STEP 1: DATA ACQUISITION:
	STEP 2: DATA CLEANING
	AND PREPARATION:
	STEP 3: EXPLORATORY
	DATA ANALYSIS (EDA):
	STEP 4: BASIC FINANCIAL ANALYSIS:
	STEP 5: DIVING DEEPER- PREDICTIVE ANALYSIS:
	Importing Financial Data
	Using APIs to Import Data:
	Web Scraping for Financial Data:
	Handling Data Formats:
	Data Cleaning and Preparation:
	Conducting Exploratory Data Analysis
	In Financial Context:
	Tools for Visual Trend Analysis:
	Incorporating Python in Financial Trend Analysis:
	CHAPTER 4: IMPORTING
	AND MANAGING FINANCIAL
	DATA WITH PYTHON
	Reading from CSV Files:
	Fetching Data from APIs:
	Public Financial Databases:
	Subscription-Based Services:
	Alternative Data Sources:
	Data Collection Techniques:
	Practical Application: Crafting a Diversified Data Strategy
	Public Financial Databases
	Practical Example: Analyzing Economic Trends with OECD Data
	APIs for Real-Time Financial Data
	Key Benefits of Using APIs for Financial Data:
	Popular APIs for Accessing Financial Data:
	Practical Use Case: Developing a Real-Time Stock Alert System
	Web Scraping for Financial Information
	Techniques for Importing Data into Python
	Handling Different Data Formats (CSV, JSON, XML)
	Strategies for Handling Large Datasets
	Preprocessing for Machine Learning
	Techniques for Handling Missing Values
	Implementing Missing Value Treatment in Python
	Data Normalization and Transformation in Financial Data Analysis
	Common Data Transformation Techniques
	Feature Engineering for Enhanced Financial Predictions
	Unveiling the Essence of Feature Engineering
	Strategies for Feature Engineering in Finance
	Feature Selection: The Counterpart of Engineering
	CHAPTER 5: EXPLORATORY DATA ANALYSIS (EDA) FOR FINANCIAL DATA
	Statistical Measures: Unraveling the Data
	Goals and Objectives of Exploratory Data Analysis in Finance
	Integrating Goals into Financial EDA Processes
	Gaining Insights from Financial Data
	Visualization Techniques for Exploratory Data Analysis: Unraveling Financial Data Mysteries
	Histograms, Scatter Plots, and Box Plots: The Triad of Financial Data Insights
	Time-Series Analysis for Financial Data: Unraveling Temporal Patterns for Strategic Insights
	Correlation Matrices for Feature Selection
	Dimensionality Reduction for Financial Datasets: Optimizing Complexity for Insight
	Clustering and Segmentation in Finance: Harnessing Data to Unveil Market Dynamics
	Anomaly Detection in Financial Data: Navigating the Waters of Unusual Activity
	CHAPTER 6: TIME SERIES ANALYSIS
	AND FORECASTING IN FINANCE:
	UNVEILING TEMPORAL INSIGHTS
	Characteristics of Time Series Data
	The Importance of Time Series Data in Financial Planning and Analysis
	Techniques for Time Series Analysis
	Moving Averages and Exponential Smoothing
	Autoregressive Integrated Moving Average (ARIMA) Models
	Constructing an ARIMA Model:
	Application in Financial Forecasting:
	Seasonal Decomposition of Time Series
	Implementing Time Series Forecasting in Python
	Time Series Forecasting with Statsmodels
	Evaluating Forecast Accuracy
	CHAPTER 7: REGRESSION ANALYSIS
	FOR FINANCIAL FORECASTING
	Linear vs. Non-linear Regression
	Building Regression Models in Python
	Model Training and Evaluation
	Interpretation of Results and Implications
	CHAPTER 8: CLASSIFICATION
	MODELS IN FINANCIAL
	FRAUD DETECTION
	Overview of Classification in Machine Learning
	Binary vs. Multiclass Classification
	Evaluation Metrics for Classification Models
	Applying Classification Models to Detect Financial Fraud
	Logistic Regression and Decision Trees: Pillars of Classification in Financial Fraud Detection
	Random Forests and Gradient Boosting Machines: Enhancing Precision in Financial Modelling
	Neural Networks for Complex Fraud Patterns: A Deep Dive into Advanced Detection Techniques
	Practical Implementation and Challenges: Executing Neural Network Strategies in Fraud Detection
	Handling Imbalanced Datasets
	Strategies for Handling Imbalance
	Practical Implementation
	Stock Market Prediction Using Machine Learning
	Credit Scoring Models Enhanced by Machine Learning
	Fraud Detection Through Advanced Machine Learning Techniques
	Personalized Financial Advice Powered by Machine Learning
	Enhancing Customer Service with Al and Machine Learning
	Machine Learning in Risk Management
	CHAPTER 9: CLUSTERING FOR CUSTOMER SEGMENTATION
	IN FINANCE
	Real-world Applications of Clustering in Customer Segmentation
	Visualizing and Interpreting Clusters
	Unveiling the Mechanics of Clustering
	The Role of Distance Metrics in Clustering
	Expanding the Horizons of Financial Analysis
	The Essence of Scaling and Normalization
	The Impact on Machine Learning Models
	Challenges in the Financial Context
	Preparing the Financial Dataset
	Selecting the Right Clustering Algorithm
	Implementing K-Means Clustering in Python
	K-means Clustering: Operational Mechanics and Financial Applications
	Hierarchical Clustering: Unveiling Nested Financial Structures
	Comparative Insights and Strategic Deployment in Python
	Elbow Method: Simplifying Complexity
	Gap Statistic: Validating Cluster Consistency
	Visualization Techniques: Beyond the Ordinary
	Interpreting Clusters: The Financial Narrative
	Python Implementation and Practical Considerations
	Customer Segmentation: Tailoring Financial Products
	Fraud Detection: Safeguarding Financial Integrity
	Risk Assessment: Enhancing Portfolio Management
	Operational Efficiency: Streamlining Processes
	Crafting Targeted Marketing Strategies
	Understanding the Spectrum of Financial Risks
	Python's Role in Identifying and Quantifying Risks
	Personalization at Scale
	Enhancing Customer Interactions with Chatbots and Virtual Assistants
	Case Study: A Personalized Banking Experience
	CHAPTER 10: BEST PRACTICES
	IN MACHINE LEARNING
	PROJECT MANAGEMENT
	Agile Methodology in ML Projects
	Case Study: Enhancing Loan Approval Processes
	Strategic Alignment and Feasibility Analysis
	Resource Allocation and Budgeting
	Risk Management and Contingency Planning
	Defining Project Scope and Objectives
	Data Governance: The Backbone of ML Projects
	Agile Methodology in Machine Learning Projects
	Key Components of Agile in ML Projects
	The Agile Advantage in ML Projects
	Foundations of Iterative Model Development
	Integrating Iterative Development in Financial ML Projects
	Collaboration Between Data Scientists and Finance Experts
	Frameworks for Effective Cooperation
	Maintenance Strategies
	Best Practices
	Continuous Integration and Delivery (CI/CD) for Machine Learning in Finance
	Continuous Integration and Delivery (CI/CD) for Machine Learning in Finance
	Leveraging Cloud and Microservices for CI/CD
	Strategies for Model Retraining
	Updating Model Algorithms and Features
	Best Practices for Model Retraining and Updating
	Ensuring Model Interpretability and Explainability in Financial Machine Learning Applications
	Strategies for Enhancing Model Interpretability and Explainability
	Best Practices for Implementing Interpretability and Explainability
	CHAPTER 11: ENSURING SECURITY AND COMPLIANCE IN FINANCIAL MACHINE LEARNING APPLICATIONS
	Implementing Compliance Best Practices
	Understanding Data Security Concerns in Machine Learning for Finance
	Mitigating Data Security Risks
	Mastering Encryption and Anonymization Techniques in Financial Machine Learning
	CHAPTER 12: SCALING
	AND DEPLOYING MACHINE
	LEARNING MODELS
	Challenges in Scaling Machine Learning Models
	Handling Increasing Data Volumes
	Ensuring Model Performance at Scale
	Cloud Computing Services for Machine Learning
	Microservices Architecture and Containers
	Machine Learning as a Service (MLaaS) Platforms
	Automated Trading Systems
	Real-Time Credit Scoring Systems
	Predictive Maintenance in Financial Operations
	ADDITIONAL RESOURCES
	Books
	Articles & Online Resources
	Organizations & Groups
	Tools & Software
	PYTHON BASICS FOR
	FINANCE GUIDE
	Variables and Data Types
	Example:
	Example:
	DATA HANDLING AND ANALYSIS
	IN PYTHON FOR FINANCE GUIDE
	Pandas for Financial Data Manipulation and Analysis
	Key Features:
	NumPy for Numerical Calculations in Finance
	Key Features:
	TIME SERIES ANALYSIS IN
	PYTHON FOR FINANCE GUIDE
	Pandas for Time Series Analysis
	DateTime for Managing Dates and Times
	VISUALIZATION IN PYTHON
	FOR FINANCE GUIDE
	Matplotlib and Seaborn for Financial Data Visualization
	Line Graphs for Stock Price Trends:
	Example:
	Histograms for Distributions of Returns:
	Example:
	Heatmaps for Correlation Matrices:
	Example:
	Interactive Line Graphs for Stock Prices:
	Example:
	ALGORITHMIC TRADING IN PYTHON
	Backtrader for Backtesting Trading Strategies
	Key Features:
	ccxt for Cryptocurrency Trading
	Key Features:
	FINANCIAL ANALYSIS WITH PYTHON
	Variance Analysis
	TREND ANALYSIS
	HORIZONTAL AND
	VERTICAL ANALYSIS
	RATIO ANALYSIS
	CASH FLOW ANALYSIS
	SCENARIO AND SENSITIVITY
	ANALYSIS
	CAPITAL BUDGETING
	BREAK-EVEN ANALYSIS
	CREATING A DATA VISUALIZATION
	PRODUCT IN FINANCE
	DATA VISUALIZATION GUIDE
	STEP 1: DEFINE YOUR STRATEGY
	STEP 2: CHOOSE A
	PROGRAMMING LANGUAGE
	STEP 3: SELECT A BROKER
	AND TRADING API
	STEP 4: GATHER AND
	ANALYZE MARKET DATA
	STEP 5: DEVELOP THE
	TRADING ALGORITHM
	STEP 6: BACKTESTING
	STEP 7: OPTIMIZATION
	STEP 8: LIVE TRADING
	STEP 9: CONTINUOUS MONITORING
	AND ADJUSTMENT
	FINANCIAL MATHEMATICS
	BLACK-SCHOLES MODEL
	THE GREEKS FORMULAS
	STOCHASTIC CALCULUS
	FOR FINANCE
	BROWNIAN MOTION
	(WIENER PROCESS)
	ITO'S LEMMA
	STOCHASTIC DIFFERENTIAL
	EQUATIONS (SDES)
	GEOMETRIC BROWNIAN
	MOTION (GBM)
	MARTINGALES
	AUTOMATION RECIPES
	1.	File Organization Automation
	2.	AUTOMATED EMAIL SENDING
	3.	WEB SCRAPING FOR
	DATA COLLECTION
	4.	SPREADSHEET DATA PROCESSING
	5.	BATCH IMAGE PROCESSING
	6.	PDF PROCESSING
	7.	AUTOMATED REPORTING
	8.	SOCIAL MEDIA AUTOMATION
	9. AUTOMATED TESTING
	WITH SELENIUM
	10. DATA BACKUP AUTOMATION
	11. NETWORK MONITORING
	12.	TASK SCHEDULING
	13.	VOICE-ACTIVATED COMMANDS
	14.	AUTOMATED FILE CONVERSION
	15.	DATABASE MANAGEMENT
	16.	CONTENT AGGREGATOR
	17.	AUTOMATED ALERTS
	18.	SEO MONITORING
	19.	EXPENSE TRACKING
	20.	AUTOMATED INVOICE
	GENERATION
	21.	DOCUMENT TEMPLATING
	22.	CODE FORMATTING
	AND LINTING
	23. AUTOMATED SOCIAL
	MEDIA ANALYSIS
	24.	INVENTORY MANAGEMENT
	25.	AUTOMATED CODE
	REVIEW COMMENTS




نظرات کاربران