دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: نویسندگان: Qingkai Kong, Timmy Siauw, Alexandre M. Bayen سری: ISBN (شابک) : 9780128195499 ناشر: Elsevier سال نشر: 2021 تعداد صفحات: 457 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 4 مگابایت
در صورت تبدیل فایل کتاب Python Programming and Numerical Methods. A Guide for Engineers and Scientists به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب روش های برنامه نویسی و عددی پایتون. راهنمای مهندسین و دانشمندان نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
برنامهنویسی پایتون و روشهای عددی: راهنمای مهندسین و دانشمندان ابزارهای برنامهنویسی و روشهای عددی را به دانشجویان مهندسی و علوم معرفی میکند، با هدف کمک به دانشجویان برای توسعه تکنیکهای حل محاسباتی خوب از طریق استفاده از روشهای عددی و زبان برنامهنویسی پایتون. . بخش اول مفاهیم اساسی برنامه نویسی را با استفاده از مثال های ساده برای پیاده سازی سریع مفاهیم جدید معرفی می کند. بخش دوم اصول الگوریتم ها و تحلیل عددی را در سطحی پوشش می دهد که به دانش آموزان اجازه می دهد تا به سرعت نتایج را در تنظیمات عملی اعمال کنند. شامل نکات، هشدارها و ویژگیهای «این را امتحان کنید» در هر فصل برای کمک به خواننده در توسعه برنامهنویسی خوب خلاصهها در پایان هر فصل امکان دسترسی سریع به اطلاعات مهم را فراهم میکند، شامل کدهایی در قالب نوت بوک Jupyter است که میتواند مستقیماً به صورت آنلاین اجرا شود.
Python Programming and Numerical Methods: A Guide for Engineers and Scientists introduces programming tools and numerical methods to engineering and science students, with the goal of helping the students to develop good computational problem-solving techniques through the use of numerical methods and the Python programming language. Part One introduces fundamental programming concepts, using simple examples to put new concepts quickly into practice. Part Two covers the fundamentals of algorithms and numerical analysis at a level that allows students to quickly apply results in practical settings. Includes tips, warnings and "try this" features within each chapter to help the reader develop good programming practice Summaries at the end of each chapter allow for quick access to important information Includes code in Jupyter notebook format that can be directly run online
Contents List of Figures Preface Purpose Prerequisites Organization How to Read This Book? Why Python? Python and Package Versions Acknowledgements 1 Python Basics 1.1 Getting Started With Python 1.1.1 Setting Up Your Working Environment 1.1.2 Three Ways to Run Python Code 1.2 Python as a Calculator 1.3 Managing Packages 1.3.1 Managing Packages Using Package Managers Install a Package Upgrade a Package Uninstall a Package Other Useful Commands 1.3.2 Install Packages From Source 1.4 Introduction to Jupyter Notebook 1.4.1 Starting the Jupyter Notebook 1.4.2 Within the Notebook 1.4.3 How Do I Close a Notebook? 1.4.4 Shutting Down the Jupyter Notebook Server 1.5 Logical Expressions and Operators 1.6 Summary and Problems 1.6.1 Summary 1.6.2 Problems 2 Variables and Basic Data Structures 2.1 Variables and Assignment 2.2 Data Structure - String 2.3 Data Structure - List 2.4 Data Structure - Tuple 2.5 Data Structure - Set 2.6 Data Structure - Dictionary 2.7 Introducing NumPy Arrays 2.8 Summary and Problems 2.8.1 Summary 2.8.2 Problems 3 Functions 3.1 Function Basics 3.1.1 Built-In Functions in Python 3.1.2 Define Your Own Function 3.2 Local Variables and Global Variables 3.3 Nested Functions 3.4 Lambda Functions 3.5 Functions as Arguments to Functions 3.6 Summary and Problems 3.6.1 Summary 3.6.2 Problems 4 Branching Statements 4.1 If-Else Statements 4.2 Ternary Operators 4.3 Summary and Problems 4.3.1 Summary 4.3.2 Problems 5 Iteration 5.1 For-Loops 5.2 While Loops 5.3 Comprehensions 5.3.1 List Comprehension 5.3.2 Dictionary Comprehension 5.4 Summary and Problems 5.4.1 Summary 5.4.2 Problems 6 Recursion 6.1 Recursive Functions 6.2 Divide-and-Conquer 6.2.1 Tower of Hanoi 6.2.2 Quicksort 6.3 Summary and Problems 6.3.1 Summary 6.3.2 Problems 7 Object-Oriented Programming 7.1 Introduction to OOP 7.2 Class and Object 7.2.1 Class 7.2.2 Object 7.2.3 Class vs Instance Attributes 7.3 Inheritance, Encapsulation, and Polymorphism 7.3.1 Inheritance 7.3.1.1 Inheriting and Extending New Method 7.3.1.2 Inheriting and Method Overriding 7.3.1.3 Inheriting and Updating Attributes With Super 7.3.2 Encapsulation 7.3.3 Polymorphism 7.4 Summary and Problems 7.4.1 Summary 7.4.2 Problems 8 Complexity 8.1 Complexity and Big-O Notation 8.2 Complexity Matters 8.3 The Profiler 8.3.1 Using the Magic Command 8.3.2 Use Python Profiler 8.3.3 Use Line Profiler 8.4 Summary and Problems 8.4.1 Summary 8.4.2 Problems 9 Representation of Numbers 9.1 Base-N and Binary 9.2 Floating Point Numbers 9.3 Round-Off Errors 9.3.1 Representation Error 9.3.2 Round-Off Error by Floating-Point Arithmetic 9.3.3 Accumulation of Round-Off Errors 9.4 Summary and Problems 9.4.1 Summary 9.4.2 Problems 10 Errors, Good Programming Practices, and Debugging 10.1 Error Types 10.2 Avoiding Errors 10.2.1 Plan Your Program 10.2.2 Test Everything Often 10.2.3 Keep Your Code Clean 10.3 Try/Except 10.4 Type Checking 10.5 Debugging 10.5.1 Activating Debugger After Running Into an Exception 10.5.2 Activating Debugger Before Running the Code 10.5.3 Add a Breakpoint 10.6 Summary and Problems 10.6.1 Summary 10.6.2 Problems 11 Reading and Writing Data 11.1 TXT Files 11.1.1 Writing to a File 11.1.2 Appending a File 11.1.3 Reading a File 11.1.4 Dealing With Numbers and Arrays 11.2 CSV Files 11.2.1 Writing and Opening a CSV File 11.2.2 Reading a CSV File 11.2.3 Beyond NumPy 11.3 Pickle Files 11.3.1 Writing to a Pickle File 11.3.2 Reading a Pickle File 11.3.3 Reading in Python 2 Pickle File 11.4 JSON Files 11.4.1 JSON Format 11.4.2 Writing a JSON File 11.4.3 Reading a JSON File 11.5 HDF5 Files 11.5.1 Reading an HDF5 File 11.6 Summary and Problems 11.6.1 Summary 11.6.2 Problems 12 Visualization and Plotting 12.1 2D Plotting 12.2 3D Plotting 12.3 Working With Maps 12.4 Animations and Movies 12.5 Summary and Problems 12.5.1 Summary 12.5.2 Problems 13 Parallelize Your Python 13.1 Parallel Computing Basics 13.1.1 Process and Thread 13.1.2 Python\'s GIL Problem 13.1.3 Disadvantages of Using Parallel Computing 13.2 Multiprocessing 13.2.1 Visualize the Execution Time 13.3 Using Joblib 13.4 Summary and Problems 13.4.1 Summary 13.4.2 Problems 14 Linear Algebra and Systems of Linear Equations 14.1 Basics of Linear Algebra 14.1.1 Sets 14.1.2 Vectors 14.1.3 Matrices 14.2 Linear Transformations 14.3 Systems of Linear Equations 14.4 Solutions to Systems of Linear Equations 14.4.1 Gauss Elimination Method 14.4.2 Gauss-Jordan Elimination Method 14.4.3 LU Decomposition Method 14.4.4 Iterative Methods - Gauss-Seidel Method 14.4.4.1 Gauss-Seidel Method 14.5 Solving Systems of Linear Equations in Python 14.6 Matrix Inversion 14.7 Summary and Problems 14.7.1 Summary 14.7.2 Problems 15 Eigenvalues and Eigenvectors 15.1 Eigenvalues and Eigenvectors Problem Statement 15.1.1 Eigenvalues and Eigenvectors 15.1.2 The Motivation Behind Eigenvalues and Eigenvectors 15.1.3 The Characteristic Equation 15.2 The Power Method 15.2.1 Finding the Largest Eigenvalue 15.2.2 The Inverse Power Method 15.2.3 The Shifted Power Method 15.3 The QR Method 15.4 Eigenvalues and Eigenvectors in Python 15.5 Summary and Problems 15.5.1 Summary 15.5.2 Problems 16 Least Squares Regression 16.1 Least Squares Regression Problem Statement 16.2 Least Squares Regression Derivation (Linear Algebra) 16.3 Least Squares Regression Derivation (Multivariate Calculus) 16.4 Least Squares Regression in Python 16.4.1 Using the Direct Inverse Method 16.4.2 Using the Pseudo-Inverse 16.4.3 Using numpy.linalg.lstsq 16.4.4 Using optimize.curve_fit From SciPy 16.5 Least Squares Regression for Nonlinear Functions 16.5.1 Log Tricks for Exponential Functions 16.5.2 Log Tricks for Power Functions 16.5.3 Polynomial Regression 16.5.4 Using optimize.curve_fit From SciPy 16.6 Summary and Problems 16.6.1 Summary 16.6.2 Problems 17 Interpolation 17.1 Interpolation Problem Statement 17.2 Linear Interpolation 17.3 Cubic Spline Interpolation 17.4 Lagrange Polynomial Interpolation 17.4.1 Using the Lagrange Function From SciPy 17.5 Newton\'s Polynomial Interpolation 17.6 Summary and Problems 17.6.1 Summary 17.6.2 Problems 18 Taylor Series 18.1 Expressing Functions Using a Taylor Series 18.2 Approximations Using Taylor Series 18.3 Discussion About Errors 18.3.1 Truncation Errors for Taylor Series 18.3.2 Estimating Truncation Errors 18.3.3 Round-Off Errors for Taylor Series 18.4 Summary and Problems 18.4.1 Summary 18.4.2 Problems 19 Root Finding 19.1 Root Finding Problem Statement 19.2 Tolerance 19.3 Bisection Method 19.4 Newton-Raphson Method 19.5 Root Finding in Python 19.6 Summary and Problems 19.6.1 Summary 19.6.2 Problems 20 Numerical Differentiation 20.1 Numerical Differentiation Problem Statement 20.2 Using Finite Difference to Approximate Derivatives 20.2.1 Using Finite Difference to Approximate Derivatives With Taylor Series 20.3 Approximating of Higher Order Derivatives 20.4 Numerical Differentiation With Noise 20.5 Summary and Problems 20.5.1 Summary 20.5.2 Problems 21 Numerical Integration 21.1 Numerical Integration Problem Statement 21.2 Riemann Integral 21.3 Trapezoid Rule 21.4 Simpson\'s Rule 21.5 Computing Integrals in Python 21.6 Summary and Problems 21.6.1 Summary 21.6.2 Problems 22 Ordinary Differential Equations (ODEs) Initial-Value Problems 22.1 ODE Initial Value Problem Statement 22.2 Reduction of Order 22.3 The Euler Method 22.4 Numerical Error and Instability 22.5 Predictor-Corrector and Runge-Kutta Methods 22.5.1 Predictor-Corrector Methods 22.5.2 Runge-Kutta Methods 22.5.2.1 Second-Order Runge-Kutta Method 22.5.2.2 Fourth-Order Runge-Kutta Method 22.6 Python ODE Solvers 22.7 Advanced Topics 22.7.1 Multistep Methods 22.7.2 Stiffness ODE 22.8 Summary and Problems 22.8.1 Summary 22.8.2 Problems 23 Boundary-Value Problems for Ordinary Differential Equations (ODEs) 23.1 ODE Boundary Value Problem Statement 23.2 The Shooting Method 23.3 The Finite Difference Method 23.4 Numerical Error and Instability 23.5 Summary and Problems 23.5.1 Summary 23.5.2 Problems 24 Fourier Transform 24.1 The Basics of Waves 24.1.1 Modeling a Wave Using Mathematical Tools 24.1.2 Characteristics of a Wave 24.2 Discrete Fourier Transform (DFT) 24.2.1 DFT 24.2.2 The Inverse DFT 24.2.3 The Limit of DFT 24.3 Fast Fourier Transform (FFT) 24.3.1 Symmetries in the DFT 24.3.2 Tricks in FFT 24.4 FFT in Python 24.4.1 FFT in NumPy 24.4.2 FFT in SciPy 24.4.3 More Examples 24.4.3.1 Electricity Demand in California 24.4.3.2 Filtering a Signal in Frequency Domain 24.5 Summary and Problems 24.5.1 Summary 24.5.2 Problems A Getting Started With Python in Windows A.1 Getting Started With Python in Windows A.1.1 Setting Up Your Working Environment in Windows A.1.2 Three Ways to Run Python Code Index