ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Python for Probability, Statistics, and Machine Learning

دانلود کتاب پایتون برای احتمالات، آمار و یادگیری ماشین

Python for Probability, Statistics, and Machine Learning

مشخصات کتاب

Python for Probability, Statistics, and Machine Learning

دسته بندی: برنامه نويسي
ویرایش: 3 
نویسندگان:   
سری:  
ISBN (شابک) : 3031046471, 9783031046476 
ناشر: Springer 
سال نشر: 2022 
تعداد صفحات: 524 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 8 مگابایت 

قیمت کتاب (تومان) : 51,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 9


در صورت تبدیل فایل کتاب Python for Probability, Statistics, and Machine Learning به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب پایتون برای احتمالات، آمار و یادگیری ماشین نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی درمورد کتاب به خارجی



فهرست مطالب

Preface to the Third Edition
Preface to the Second Edition
Preface to the First Edition
Contents
1 Getting Started with Scientific Python
	1.1 Installation and Setup
	1.2 Numpy
		1.2.1 Numpy Arrays and Memory
		1.2.2 Numpy Matrices
		1.2.3 Numpy Broadcasting
		1.2.4 Numpy Masked Arrays
		1.2.5 Floating-Point Numbers
		1.2.6 Numpy Optimizations and Prospectus
	1.3 Matplotlib
		1.3.1 Alternatives to Matplotlib
		1.3.2 Extensions to Matplotlib
	1.4 IPython
	1.5 Jupyter Notebook
	1.6 Scipy
	1.7 Pandas
		1.7.1 Series
		1.7.2 Dataframe
	1.8 Sympy
	1.9 Xarray for High Dimensional Dataframes
	1.10 Interfacing with Compiled Libraries
	1.11 Integrated Development Environments
	1.12 Quick Guide to Performance and Parallel Programming
	1.13 Other Resources
2 Probability
	2.1 Introduction
		2.1.1 Understanding Probability Density
		2.1.2 Random Variables
		2.1.3 Continuous Random Variables
		2.1.4 Transformation of Variables Beyond Calculus
		2.1.5 Independent Random Variables
		2.1.6 Classic Broken Rod Example
	2.2 Projection Methods
		2.2.1 Weighted Distance
	2.3 Conditional Expectation as Projection
		2.3.1 Appendix
	2.4 Conditional Expectation and Mean Squared Error
	2.5 Worked Examples of Conditional Expectation and Mean Square Error Optimization
		2.5.1 Example
		2.5.2 Example
		2.5.3 Example
		2.5.4 Example
		2.5.5 Example
	2.6 Useful Distributions
		2.6.1 Normal Distribution
		2.6.2 Multinomial Distribution
		2.6.3 Chi-Square Distribution
		2.6.4 Poisson and Exponential Distributions
		2.6.5 Gamma Distribution
		2.6.6 Beta Distribution
		2.6.7 Dirichlet-Multinomial Distribution
		2.6.8 Negative Binomial Distribution
		2.6.9 Negative Multinomial Distribution
	2.7 Information Entropy
		2.7.1 Information Theory Concepts
		2.7.2 Properties of Information Entropy
		2.7.3 Kullback-Leibler Divergence
		2.7.4 Conditional Entropy and Mutual Information
		2.7.5 Cross-Entropy as Maximum Likelihood
	2.8 Moment Generating Functions
	2.9 Monte Carlo Sampling Methods
		2.9.1 Inverse CDF Method for Discrete Variables
		2.9.2 Inverse CDF Method for Continuous Variables
		2.9.3 Rejection Method
	2.10 Sampling Importance Resampling
	2.11 Useful Inequalities
		2.11.1 Markov\'s Inequality
		2.11.2 Chebyshev\'s Inequality
		2.11.3 Hoeffding\'s Inequality
		2.11.4 Jensen\'s Inequality
3 Statistics
	3.1 Introduction
	3.2 Python Modules for Statistics
		3.2.1 Scipy Statistics Module
		3.2.2 Sympy Statistics Module
		3.2.3 Other Python Modules for Statistics
	3.3 Types of Convergence
		3.3.1 Almost Sure Convergence
		3.3.2 Convergence in Probability
		3.3.3 Convergence in Distribution
		3.3.4 Limit Theorems
	3.4 Estimation Using Maximum Likelihood
		3.4.1 Setting Up the Coin Flipping Experiment
		3.4.2 Delta Method
	3.5 Hypothesis Testing and P-Values
		3.5.1 Back to the Coin Flipping Example
		3.5.2 Receiver Operating Characteristic
		3.5.3 P-Values
		3.5.4 Test Statistics
		3.5.5 Testing Multiple Hypotheses
		3.5.6 Fisher Exact Test
		3.5.7 Contingency Table Protocols
	3.6 Confidence Intervals
	3.7 Sufficient Statistics
	3.8 Linear Regression
		3.8.1 Extensions to Multiple Covariates
	3.9 Maximum A Posteriori
	3.10 Robust Statistics
	3.11 Bootstrapping
		3.11.1 Parametric Bootstrap
	3.12 Gauss-Markov
	3.13 Nonparametric Methods
		3.13.1 Kernel Density Estimation
		3.13.2 Kernel Smoothing
		3.13.3 Nonparametric Regression Estimators
		3.13.4 Nearest Neighbors Regression
		3.13.5 Kernel Regression
		3.13.6 Curse of Dimensionality
		3.13.7 Nonparametric Tests
	3.14 Survival Analysis
		3.14.1 Survival Curves
		3.14.2 Censoring and Truncation
		3.14.3 Hazard Functions and Their Properties
		3.14.4 Expectations
		3.14.5 Parametric Regression Models
		3.14.6 Cox Proportional Hazards Model
	3.15 Expectation Maximization
	3.16 Survey Sampling
		3.16.1 Unequal Sampling with Replacement for Weighted Totals
		3.16.2 Unequal Sampling for Unweighted Totals
		3.16.3 Unequal Sampling Without Replacement
		3.16.4 Probability Proportional to Size (PPS) Cluster Sampling
		3.16.5 Stratified Random Sampling
	3.17 Log-linear Models
		3.17.1 Poisson and Multinomial Models
		3.17.2 Log-linear Models
		3.17.3 I JK  Log-linear Models
		3.17.4 Iterative Proportional Fitting
		3.17.5 Hierarchical Models
		3.17.6 Deviance
		3.17.7 Degrees of Freedom
		3.17.8 Graphical Models
		3.17.9 Model Selection
		3.17.10 Table Raking
	3.18 Missing Data
		3.18.1 Multiple Imputation
		3.18.2 Canonical Example for Multiple Imputation
		3.18.3 Worked Example for Multiple Imputation
		3.18.4 Multivariate Imputation by Chained Equations (MICE)
		3.18.5 Diagnostics
4 Machine Learning
	4.1 Introduction
	4.2 Python Machine Learning Modules
	4.3 Theory of Learning
		4.3.1 Introduction to Theory of Machine Learning
		4.3.2 Theory of Generalization
		4.3.3 Worked Example for Generalization/Approximation Complexity
		4.3.4 Cross-Validation
		4.3.5 Bias and Variance
		4.3.6 Learning Noise
	4.4 Decision Trees
		4.4.1 Random Forests
		4.4.2 Understanding Boosting Trees
	4.5 Logistic Regression
	4.6 Generalized Linear Models
	4.7 Regularization
		4.7.1 Ridge Regression
		4.7.2 Lasso Regression
	4.8 Support Vector Machines
		4.8.1 Kernel Tricks
	4.9 Dimensionality Reduction
		4.9.1 Generalized PCA
		4.9.2 Independent Component Analysis
	4.10 Clustering
	4.11 Ensemble Methods
		4.11.1 Bagging
		4.11.2 Boosting
	4.12 Deep Learning
		4.12.1 Understanding Gradient Descent
		4.12.2 Image Processing Using ConvolutionalNeural Networks
	4.13 Interpretability
Notation
References
Index




نظرات کاربران