دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
دسته بندی: برنامه نویسی: زبان های برنامه نویسی ویرایش: 1 نویسندگان: Michael Walker سری: ISBN (شابک) : 9781800565661 ناشر: Packt Publishing سال نشر: 2020 تعداد صفحات: 437 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 3 مگابایت
کلمات کلیدی مربوط به کتاب کتاب آشپزی پاکسازی دادههای پایتون: تکنیکهای مدرن و ابزار پایتون برای شناسایی و حذف دادههای کثیف و استخراج بینشهای کلیدی: یادگیری ماشینی، پایتون، تجسم داده، SQL، آمار، JSON، جمعآوری داده، اکسل، رگرسیون خطی، CSV، پاکسازی داده، NumPy، پانداها، اتوماسیون، تجزیه و تحلیل سریهای زمانی، کاوش داده
در صورت تبدیل فایل کتاب Python Data Cleaning Cookbook: Modern techniques and Python tools to detect and remove dirty data and extract key insights به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب کتاب آشپزی پاکسازی دادههای پایتون: تکنیکهای مدرن و ابزار پایتون برای شناسایی و حذف دادههای کثیف و استخراج بینشهای کلیدی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
کشف کنید که چگونه داده های خود را با جزئیات توصیف کنید، مشکلات داده را شناسایی کنید، و نحوه حل آنها را با استفاده از تکنیک ها و نکات و ترفندهای رایج بیابید. ویژگی های کلیدی • با تکنیک های مختلف پاکسازی داده ها به خوبی آشنا شوید تا بینش های کلیدی را آشکار کنید • داده ها را با پیچیدگی های مختلف دستکاری کنید تا آنها را به شکل مناسب مطابق با نیازهای کسب و کار خود شکل دهید • قبل از اینکه به تجزیه و تحلیل داده ها بروید، حجم داده های بزرگ را برای تشخیص مشکلات پاکسازی، نظارت و اعتبارسنجی کنید توضیحات کتاب دریافت داده های تمیز برای آشکارسازی بینش ها ضروری است، زیرا پرش مستقیم به تجزیه و تحلیل داده ها بدون تمیز کردن مناسب داده ها ممکن است منجر به نتایج نادرست شود. این کتاب ابزارها و تکنیک هایی را به شما نشان می دهد که می توانید برای تمیز کردن و مدیریت داده ها با پایتون استفاده کنید. شما با آشنایی با شکل داده ها با استفاده از شیوه هایی که می توانند به طور معمول در اکثر منابع داده به کار گرفته شوند، شروع می کنید. سپس، این کتاب به شما میآموزد که چگونه دادهها را دستکاری کنید تا آنها را به شکل مفیدی درآورید. همچنین یاد خواهید گرفت که چگونه داده ها را فیلتر و خلاصه کنید تا بینش به دست آورید و بهتر درک کنید چه چیزی منطقی است و چه چیزی نیست، همراه با کشف نحوه کار بر روی داده ها برای رسیدگی به مسائلی که شناسایی کرده اید. با ادامه کار، کارهای کلیدی مانند رسیدگی به مقادیر از دست رفته، اعتبارسنجی خطاها، حذف داده های تکراری، نظارت بر حجم بالای داده ها، و رسیدگی به موارد پرت و تاریخ های نامعتبر را انجام خواهید داد. در مرحله بعد، دستورالعملهای استفاده از یادگیری نظارتشده و تجزیه و تحلیل Naive Bayes را برای شناسایی مقادیر غیرمنتظره و خطاهای طبقهبندی، و ایجاد تجسم برای تجزیه و تحلیل دادههای اکتشافی (EDA) برای تجسم مقادیر غیرمنتظره پوشش خواهید داد. در نهایت، توابع و کلاسهایی میسازید که میتوانید در صورت داشتن دادههای جدید، بدون تغییر دوباره از آنها استفاده کنید. در پایان این کتاب پایتون، شما به تمام مهارت های کلیدی که برای پاکسازی داده ها و تشخیص مشکلات موجود در آن نیاز دارید مجهز خواهید شد. آنچه خواهید آموخت • نحوه خواندن و تجزیه و تحلیل داده ها از منابع مختلف را بیابید • خلاصه ای از ویژگی های قاب های داده، ستون ها و ردیف ها را تهیه کنید • داده ها را فیلتر کنید و ستون های مورد علاقه را که معیارهای داده شده را برآورده می کنند انتخاب کنید • به مشکلات داده های نامرتب، از جمله کار با تاریخ ها و مقادیر از دست رفته رسیدگی کنید • بهره وری خود را در پانداهای پایتون با استفاده از روش زنجیره ای بهبود بخشید • از تجسم ها برای به دست آوردن بینش های بیشتر و شناسایی مشکلات داده های بالقوه استفاده کنید • توانایی خود را برای یادگیری آنچه در داده های شما می گذرد، افزایش دهید • ایجاد توابع و کلاس های تعریف شده توسط کاربر برای تمیز کردن خودکار داده ها این کتاب برای چه کسی است این کتاب برای کسانی است که به دنبال راه هایی برای مدیریت داده های کثیف، تکراری و ضعیف با استفاده از ابزارها و تکنیک های مختلف پایتون هستند. این کتاب یک رویکرد مبتنی بر دستور العمل دارد تا به شما کمک کند تا نحوه تمیز کردن و مدیریت داده ها را بیاموزید. دانش برنامه نویسی پایتون تنها چیزی است که برای استفاده حداکثری از کتاب نیاز دارید. درباره نویسنده مایکل واکر بیش از 30 سال به عنوان تحلیلگر داده در موسسات آموزشی مختلف کار کرده است. او همچنین از سال 2006 به دانشآموزان علوم داده، روشهای تحقیق، آمار و برنامهنویسی کامپیوتری آموزش داده است. او گزارشهای بخش عمومی و بنیاد را تولید میکند و تجزیه و تحلیلهایی را برای انتشار در مجلات دانشگاهی انجام میدهد.
Discover how to describe your data in detail, identify data issues, and find out how to solve them using commonly used techniques and tips and tricks Key Features • Get well-versed with various data cleaning techniques to reveal key insights • Manipulate data of different complexities to shape them into the right form as per your business needs • Clean, monitor, and validate large data volumes to diagnose problems before moving on to data analysis Book Description Getting clean data to reveal insights is essential, as directly jumping into data analysis without proper data cleaning may lead to incorrect results. This book shows you tools and techniques that you can apply to clean and handle data with Python. You'll begin by getting familiar with the shape of data by using practices that can be deployed routinely with most data sources. Then, the book teaches you how to manipulate data to get it into a useful form. You'll also learn how to filter and summarize data to gain insights and better understand what makes sense and what does not, along with discovering how to operate on data to address the issues you've identified. Moving on, you'll perform key tasks, such as handling missing values, validating errors, removing duplicate data, monitoring high volumes of data, and handling outliers and invalid dates. Next, you'll cover recipes on using supervised learning and Naive Bayes analysis to identify unexpected values and classification errors, and generate visualizations for exploratory data analysis (EDA) to visualize unexpected values. Finally, you'll build functions and classes that you can reuse without modification when you have new data. By the end of this Python book, you'll be equipped with all the key skills that you need to clean data and diagnose problems within it. What you will learn • Find out how to read and analyze data from a variety of sources • Produce summaries of the attributes of data frames, columns, and rows • Filter data and select columns of interest that satisfy given criteria • Address messy data issues, including working with dates and missing values • Improve your productivity in Python pandas by using method chaining • Use visualizations to gain additional insights and identify potential data issues • Enhance your ability to learn what is going on in your data • Build user-defined functions and classes to automate data cleaning Who this book is for This book is for anyone looking for ways to handle messy, duplicate, and poor data using different Python tools and techniques. The book takes a recipe-based approach to help you to learn how to clean and manage data. Working knowledge of Python programming is all you need to get the most out of the book. About the Author Michael Walker has worked as a data analyst for over 30 years at a variety of educational institutions. He has also taught data science, research methods, statistics, and computer programming to undergraduates since 2006. He generates public sector and foundation reports and conducts analyses for publication in academic journals.
Cover Copyright About Packt Contributors Table of Contents Preface Chapter 1: Anticipating Data Cleaning Issues when Importing Tabular Data into Pandas Technical requirements Importing CSV files Getting ready How to do it… How it works... There's more... See also Importing Excel files Getting ready How to do it… How it works… There's more… See also Importing data from SQL databases Getting ready How to do it... How it works… There's more… See also Importing SPSS, Stata, and SAS data Getting ready How to do it... How it works... There's more… See also Importing R data Getting ready How to do it… How it works… There's more… See also Persisting tabular data Getting ready How to do it… How it works... There's more... Chapter 2: Anticipating Data Cleaning Issues when Importing HTML and JSON into pandas Technical requirements Importing simple JSON data Getting ready How to do it… How it works… There's more… Importing more complicated JSON data from an API Getting ready How to do it... How it works… There's more… See also Importing data from web pages Getting ready How to do it… How it works… There's more… Persisting JSON data Getting ready How to do it... How it works… There's more… Chapter 3: Taking the Measure of Your Data Technical requirements Getting a first look at your data Getting ready… How to do it... How it works… There's more... See also Selecting and organizing columns Getting ready… How to do it… How it works… There's more… See also Selecting rows Getting ready... How to do it... How it works… There's more… See also Generating frequencies for categorical variables Getting ready… How to do it… How it works… There's more… Generating summary statistics for continuous variables Getting ready… How to do it… How it works… See also Chapter 4: Identifying Missing Values and Outliers in Subsets of Data Technical requirements Finding missing values Getting ready How to do it… How it works... See also Identifying outliers with one variable Getting ready How to do it... How it works… There's more… See also Identifying outliers and unexpected values in bivariate relationships Getting ready How to do it... How it works… There's more… See also Using subsetting to examine logical inconsistencies in variable relationships Getting ready How to do it… How it works… See also Using linear regression to identify data points with significant influence Getting ready How to do it… How it works... There's more… Using k-nearest neighbor to find outliers Getting ready How to do it… How it works... There's more... See also Using Isolation Forest to find anomalies Getting ready How to do it... How it works… There's more… See also Chapter 5: Using Visualizations for the Identification of Unexpected Values Technical requirements Using histograms to examine the distribution of continuous variables Getting ready How to do it… How it works… There's more... Using boxplots to identify outliers for continuous variables Getting ready How to do it… How it works... There's more... See also Using grouped boxplots to uncover unexpected values in a particular group Getting ready How to do it... How it works... There's more… See also Examining both the distribution shape and outliers with violin plots Getting ready How to do it… How it works… There's more… See also Using scatter plots to view bivariate relationships Getting ready How to do it... How it works… There's more... See also Using line plots to examine trends in continuous variables Getting ready How to do it… How it works... There's more… See also Generating a heat map based on a correlation matrix Getting ready How to do it… How it works… There's more… See also Chapter 6: Cleaning and Exploring Data with Series Operations Technical requirements Getting values from a pandas series Getting ready How to do it… How it works... Showing summary statistics for a pandas series Getting ready How to do it... How it works… There's more… See also Changing series values Getting ready How to do it… How it works… There's more… See also Changing series values conditionally Getting ready How to do it… How it works… There's more… See also Evaluating and cleaning string series data Getting ready How to do it... How it works... There's more… Working with dates Getting ready How to do it… How it works… See also Identifying and cleaning missing data Getting ready How to do it… How it works… There's more... See also Missing value imputation with K-nearest neighbor Getting ready How to do it… How it works… There's more... See also Chapter 7: Fixing Messy Data when Aggregating Technical requirements Looping through data with itertuples (an anti-pattern) Getting ready How to do it… How it works... There's more... Calculating summaries by group with NumPy arrays Getting ready How to do it… How it works… There's more… See also Using groupby to organize data by groups Getting ready How to do it… How it works... There's more... Using more complicated aggregation functions with groupby Getting ready How to do it… How it works… There's more… See also Using user-defined functions and apply with groupby Getting ready How to do it… How it works... There's more... See also Using groupby to change the unit of analysis of a DataFrame Getting ready How to do it... How it works… Chapter 8: Addressing Data Issues When Combining DataFrames Technical requirements Combining DataFrames vertically Getting ready How to do it… How it works... See also Doing one-to-one merges Getting ready How to do it... How it works... There's more... Using multiple merge-by columns Getting ready How to do it... How it works... There's more... Doing one-to-many merges Getting ready How to do it… How it works... There's more… See also Doing many-to-many merges Getting ready How to do it... How it works... There's more... Developing a merge routine Getting ready How to do it… How it works... See also Chapter 9: Tidying and Reshaping Data Technical requirements Removing duplicated rows Getting ready... How to do it… How it works... There's more... See also... Fixing many-to-many relationships Getting ready... How to do it… How it works... There's more... See also... Using stack and melt to reshape data from wide to long format Getting ready... How to do it… How it works... Melting multiple groups of columns Getting ready... How to do it… How it works... There's more... Using unstack and pivot to reshape data from long to wide Getting ready... How to do it… How it works... Chapter 10: User-Defined Functions and Classes to Automate Data Cleaning Technical requirements Functions for getting a first look at our data Getting ready... How to do it... How it works... There's more... Functions for displaying summary statistics and frequencies Getting ready How to do it... How it works... There's more... See also... Functions for identifying outliers and unexpected values Getting ready How to do it... How it works... There's more... See also Functions for aggregating or combining data Getting ready How to do it... How it works... There's more... See also Classes that contain the logic for updating series values Getting ready How to do it... How it works... There's more... See also Classes that handle non-tabular data structures Getting ready How to do it... How it works... There's more... Other Books You May Enjoy Index