دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: [3 ed.]
نویسندگان: Fabio Nelli
سری:
ISBN (شابک) : 9781484295311, 9781484295328
ناشر: Apress
سال نشر: 2023
تعداد صفحات: 455
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 19 Mb
در صورت تبدیل فایل کتاب Python Data Analytics: With Pandas, NumPy, and Matplotlib, 3rd Edition به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب تجزیه و تحلیل داده های پایتون: با Pandas، NumPy و Matplotlib، نسخه سوم نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
جدیدترین ابزارها و تکنیک های پایتون را کاوش کنید تا به شما در مقابله با دنیای جمع آوری و تجزیه و تحلیل داده ها کمک کند. محاسبات علمی را با NumPy، تجسم با matplotlib و یادگیری ماشینی را با scikit-learn مرور خواهید کرد. این نسخه سوم به طور کامل برای آخرین نسخه پایتون و کتابخانه های مرتبط با آن به روز شده است و شامل تحلیل داده های رسانه های اجتماعی، تجزیه و تحلیل تصویر با OpenCV و کتابخانه های یادگیری عمیق است. هر فصل شامل چندین مثال است که نحوه کار با هر کتابخانه را نشان می دهد. در قلب آن پوشش پانداها نهفته است، برای ساختارهای داده با کارایی بالا و آسان برای استفاده و ابزارهایی برای دستکاری داده ها، نویسنده فابیو نلی، به طور ماهرانه استفاده از پایتون را برای پردازش، مدیریت و بازیابی اطلاعات نشان داده است. فصلهای بعدی آنچه را که آموختهاید در تشخیص دست خط و گسترش قابلیتهای گرافیکی با کتابخانه جاوا اسکریپت D3 اعمال میکنند. چه با دادههای فروش، دادههای سرمایهگذاری، دادههای پزشکی، استفاده از صفحه وب یا سایر مجموعههای داده سر و کار داشته باشید، Python Data Analytics، نسخه سوم با نمونههایی از ذخیره، دسترسی و تجزیه و تحلیل دادهها مرجع ارزشمندی است. آنچه یاد خواهید گرفت مفاهیم اصلی تجزیه و تحلیل داده ها و اکوسیستم پایتون را درک کنید با پانداها برای خواندن، نوشتن و پردازش داده ها به طور عمیق بروید از ابزارها و تکنیک هایی برای تجسم داده ها و تجزیه و تحلیل تصویر استفاده کنید کتابخانه های محبوب یادگیری عمیق Keras، Theano، TensorFlow را بررسی کنید. و PyTorch Who This Book برای توسعه دهندگان باتجربه Python است که باید در مورد ابزارهای Pythonic برای تجزیه و تحلیل داده ها بیاموزند
Explore the latest Python tools and techniques to help you tackle the world of data acquisition and analysis. You\'ll review scientific computing with NumPy, visualization with matplotlib, and machine learning with scikit-learn. This third edition is fully updated for the latest version of Python and its related libraries, and includes coverage of social media data analysis, image analysis with OpenCV, and deep learning libraries. Each chapter includes multiple examples demonstrating how to work with each library. At its heart lies the coverage of pandas, for high-performance, easy-to-use data structures and tools for data manipulation Author Fabio Nelli expertly demonstrates using Python for data processing, management, and information retrieval. Later chapters apply what you\'ve learned to handwriting recognition and extending graphical capabilities with the JavaScript D3 library. Whether you are dealing with sales data, investment data, medical data, web page usage, or other data sets, Python Data Analytics, Third Edition is an invaluable reference with its examples of storing, accessing, and analyzing data. What You\'ll Learn Understand the core concepts of data analysis and the Python ecosystem Go in depth with pandas for reading, writing, and processing data Use tools and techniques for data visualization and image analysis Examine popular deep learning libraries Keras, Theano,TensorFlow, and PyTorch Who This Book Is For Experienced Python developers who need to learn about Pythonic tools for data analysis
Table of Contents About the Author About the Technical Reviewer Preface Chapter 1: An Introduction to Data Analysis Data Analysis Knowledge Domains of the Data Analyst Computer Science Mathematics and Statistics Machine Learning and Artificial Intelligence Professional Fields of Application Understanding the Nature of the Data When the Data Become Information When the Information Becomes Knowledge Types of Data The Data Analysis Process Problem Definition Data Extraction Data Preparation Data Exploration/Visualization Predictive Modeling Model Validation Deployment Quantitative and Qualitative Data Analysis Open Data Python and Data Analysis Conclusions Chapter 2: Introduction to the Python World Python—The Programming Language The Interpreter and the Execution Phases of the Code CPython Cython Pyston Jython IronPython PyPy RustPython Installing Python Python Distributions Anaconda Anaconda Navigator Using Python Python Shell Run an Entire Program Implement the Code Using an IDE Interact with Python Writing Python Code Make Calculations Import New Libraries and Functions Data Structure Functional Programming Indentation IPython IPython Shell The Jupyter Project Jupyter QtConsole Jupyter Notebook Jupyter Lab PyPI—The Python Package Index The IDEs for Python Spyder Eclipse (pyDev) Sublime Liclipse NinjaIDE Komodo IDE SciPy NumPy Pandas matplotlib Conclusions Chapter 3: The NumPy Library NumPy: A Little History The NumPy Installation ndarray: The Heart of the Library Create an Array Types of Data The dtype Option Intrinsic Creation of an Array Basic Operations Arithmetic Operators The Matrix Product Increment and Decrement Operators Universal Functions (ufunc) Aggregate Functions Indexing, Slicing, and Iterating Indexing Slicing Iterating an Array Conditions and Boolean Arrays Shape Manipulation Array Manipulation Joining Arrays Splitting Arrays General Concepts Copies or Views of Objects Vectorization Broadcasting Structured Arrays Reading and Writing Array Data on Files Loading and Saving Data in Binary Files Reading Files with Tabular Data Conclusions Chapter 4: The pandas Library—An Introduction pandas: The Python Data Analysis Library Installation of pandas Installation from Anaconda Installation from PyPI Getting Started with pandas Introduction to pandas Data Structures The Series Declaring a Series Selecting the Internal Elements Assigning Values to the Elements Defining a Series from NumPy Arrays and Other Series Filtering Values Operations and Mathematical Functions Evaluating Vales NaN Values Series as Dictionaries Operations Between Series The Dataframe Defining a Dataframe Selecting Elements Assigning Values Membership of a Value Deleting a Column Filtering Dataframe from a Nested dict Transposition of a Dataframe The Index Objects Methods on Index Index with Duplicate Labels Other Functionalities on Indexes Reindexing Dropping Arithmetic and Data Alignment Operations Between Data Structures Flexible Arithmetic Methods Operations Between Dataframes and Series Function Application and Mapping Functions by Element Functions by Row or Column Statistics Functions Sorting and Ranking Correlation and Covariance “Not a Number” Data Assigning a NaN Value Filtering Out NaN Values Filling in NaN Occurrences Hierarchical Indexing and Leveling Reordering and Sorting Levels Summary Statistics with groupby Instead of with Level Conclusions Chapter 5: pandas: Reading and Writing Data I/O API Tools CSV and Textual Files Reading Data in CSV or Text Files Using Regexp to Parse TXT Files Reading TXT Files Into Parts Writing Data in CSV Reading and Writing HTML Files Writing Data in HTML Reading Data from an HTML File Reading Data from XML Reading and Writing Data on Microsoft Excel Files JSON Data The HDF5 Format Pickle—Python Object Serialization Serialize a Python Object with cPickle Pickling with pandas Interacting with Databases Loading and Writing Data with SQLite3 Loading and Writing Data with PostgreSQL in a Docker Container Reading and Writing Data with a NoSQL Database: MongoDB Conclusions Chapter 6: pandas in Depth: Data Manipulation Data Preparation Merging Merging on an Index Concatenating Combining Pivoting Pivoting with Hierarchical Indexing Pivoting from “Long” to “Wide” Format Removing Data Transformation Removing Duplicates Mapping Replacing Values via Mapping Adding Values via Mapping Rename the Indexes of the Axes Discretization and Binning Detecting and Filtering Outliers Permutation Random Sampling String Manipulation Built-in Methods for String Manipulation Regular Expressions Data Aggregation GroupBy A Practical Example Hierarchical Grouping Group Iteration Chain of Transformations Functions on Groups Advanced Data Aggregation Conclusions Chapter 7: Data Visualization with matplotlib and Seaborn The matplotlib Library Installation The matplotlib Architecture Backend Layer Artist Layer Scripting Layer (pyplot) pylab and pyplot pyplot The Plotting Window Data Visualization with Jupyter Notebook Set the Properties of the Plot matplotlib and NumPy Using kwargs Working with Multiple Figures and Axes Adding Elements to the Chart Adding Text Adding a Grid Adding a Legend Saving Your Charts Saving the Code Saving Your Notebook as an HTML File or as Other File Formats Saving Your Chart Directly as an Image Handling Date Values Chart Typology Line Charts Line Charts with pandas Histograms Bar Charts Horizontal Bar Charts Multiserial Bar Charts Multiseries Bar Charts with a pandas Dataframe Multiseries Stacked Bar Charts Stacked Bar Charts with a pandas Dataframe Other Bar Chart Representations Pie Charts Pie Charts with a pandas Dataframe Advanced Charts Contour Plots Polar Charts The mplot3d Toolkit 3D Surfaces Scatter Plots in 3D Bar Charts in 3D Multipanel Plots Display Subplots Within Other Subplots Grids of Subplots The Seaborn Library Conclusions Chapter 8: Machine Learning with scikit-learn The scikit-learn Library Machine Learning Supervised and Unsupervised Learning Supervised Learning Unsupervised Learning Training Set and Testing Set Supervised Learning with scikit-learn The Iris Flower Dataset The PCA Decomposition K-Nearest Neighbors Classifier Diabetes Dataset Linear Regression: The Least Square Regression Support Vector Machines (SVMs) Support Vector Classification (SVC) Nonlinear SVC Plotting Different SVM Classifiers Using the Iris Dataset Support Vector Regression (SVR) Conclusions Untitled Chapter 9: Deep Learning with TensorFlow Artificial Intelligence, Machine Learning, and Deep Learning Artificial Intelligence Machine Learning Is a Branch of Artificial Intelligence Deep Learning Is a Branch of Machine Learning The Relationship Between Artificial Intelligence, Machine Learning, and Deep Learning Deep Learning Neural Networks and GPUs Data Availability: Open Data Source, Internet of Things, and Big Data Python Deep Learning Python Frameworks Artificial Neural Networks How Artificial Neural Networks Are Structured Single Layer Perceptron (SLP) Multilayer Perceptron (MLP) Correspondence Between Artificial and Biological Neural Networks TensorFlow TensorFlow: Google’s Framework TensorFlow: Data Flow Graph Start Programming with TensorFlow TensorFlow 2.x vs TensorFlow 1.x Installing TensorFlow Programming with the Jupyter Notebook Tensors Loading Data Into a Tensor from a pandas Dataframe Loading Data in a Tensor from a CSV File Operation on Tensors Developing a Deep Learning Model with TensorFlow Model Building Model Compiling Model Training and Testing Prediction Making Practical Examples with TensorFlow 2.x Single Layer Perceptron with TensorFlow Before Starting Data To Be Analyzed Multilayer Perceptron (with One Hidden Layer) with TensorFlow Multilayer Perceptron (with Two Hidden Layers) with TensorFlow Conclusions Chapter 10: An Example—Meteorological Data A Hypothesis to Be Tested: The Influence of the Proximity of the Sea The System in the Study: The Adriatic Sea and the Po Valley Finding the Data Source Data Analysis on Jupyter Notebook Analysis of Processed Meteorological Data The RoseWind Calculating the Mean Distribution of the Wind Speed Conclusions Chapter 11: Embedding the JavaScript D3 Library in the IPython Notebook The Open Data Source for Demographics The JavaScript D3 Library Drawing a Clustered Bar Chart The Choropleth Maps The Choropleth Map of the U.S. Population in 2022 Conclusions Chapter 12: Recognizing Handwritten Digits Handwriting Recognition Recognizing Handwritten Digits with scikit-learn The Digits Dataset Learning and Predicting Recognizing Handwritten Digits with TensorFlow Learning and Predicting with an SLP Learning and Predicting with an MLP Conclusions Chapter 13: Textual Data Analysis with NLTK Text Analysis Techniques The Natural Language Toolkit (NLTK) Import the NLTK Library and the NLTK Downloader Tool Search for a Word with NLTK Analyze the Frequency of Words Select Words from Text Bigrams and Collocations Preprocessing Steps Use Text on the Network Extract the Text from the HTML Pages Sentiment Analysis Conclusions Chapter 14: Image Analysis and Computer Vision with OpenCV Image Analysis and Computer Vision OpenCV and Python OpenCV and Deep Learning Installing OpenCV First Approaches to Image Processing and Analysis Before Starting Load and Display an Image Work with Images Save the New Image Elementary Operations on Images Image Blending Image Analysis Edge Detection and Image Gradient Analysis Edge Detection The Image Gradient Theory A Practical Example of Edge Detection with the Image Gradient Analysis A Deep Learning Example: Face Detection Conclusions Appendix A: Writing Mathematical Expressions with LaTeX With matplotlib With Jupyter Notebook in a Python Cell With Jupyter Notebook in a Markdown Cell Subscripts and Superscripts Fractions, Binomials, and Stacked Numbers Radicals Fonts Accents Appendix B: Open Data Sources Political and Government Data Health Data Social Data Miscellaneous and Public Datasets Financial Data Climatic Data Sports Data Publications, Newspapers, and Books Musical Data Index