دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 1
نویسندگان: Jaime Buelta
سری: 1
ISBN (شابک) : 9781801819992
ناشر: Packt
سال نشر: 2022
تعداد صفحات: 595
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 7 مگابایت
در صورت تبدیل فایل کتاب Python Architecture Patterns به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب الگوهای معماری پایتون [, ed.] 9788089992 نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
استاد طراحی API، ساختارهای رویداد محور و مدیریت بسته در پایتون
Master API design, event-driven structures, and package management in Python
Cover Copyright Table of Contents Preface Chapter 1: Introduction to Software Architecture Defining the structure of a system Division into smaller units In-process communication Conway's Law – Effects on software architecture Application example – Overview Security aspects of software architecture Summary Part I Chapter 2: API Design Abstractions Using the right abstractions Leaking abstractions Resources and action abstractions RESTful interfaces A more practical definition Headers and statuses Designing resources Resources and parameters Pagination Designing a RESTful API process Using the Open API specification Authentication Authenticating HTML interfaces Authenticating RESTful interfaces Self-encoded tokens Versioning the API Why versioning? Internal versus external versioning Semantic versioning Simple versioning Frontend and backend Model View Controller structure HTML interfaces Traditional HTML interfaces Dynamic pages Single-page apps Hybrid approach Designing the API for the example Endpoints Review of the design and implementation Summary Chapter 3: Data Modeling Types of databases Relational databases Non-relational databases Key-value stores Document stores Wide-column databases Graph databases Small databases Database transactions Distributed relational databases Primary/replica Sharding Pure sharding Mixed sharding Table sharding Advantages and disadvantages of sharding Schema design Schema normalization Denormalization Data indexing Cardinality Summary Chapter 4: The Data Layer The Model layer Domain-Driven Design Using ORM Independence from the database Independence from SQL and the Repository pattern No problems related to composing SQL The Unit of Work pattern and encapsulating the data CQRS, using different models for read and write Database migrations Backward compatibility Relational schema changes Changing the database without interruption Data migrations Changes without enforcing a schema Dealing with legacy databases Detecting a schema from a database Syncing the existing schema to the ORM definition Summary Part II Chapter 5: The Twelve-Factor App Methodology Intro to the Twelve-Factor App Continuous Integration Scalability Configuration The Twelve Factors Build once, run multiple times Dependencies and configurations Scalability Monitoring and admin Containerized Twelve-Factor Apps Summary Chapter 6: Web Server Structures Request-response Web architecture Web servers Serving static content externally Reverse proxy Logging Advanced usages uWSGI The WSGI application Interacting with the web server Processes Process lifecycle Python worker Django MVT architecture Routing a request towards a View The View HttpRequest HttpResponse Middleware Django REST framework Models URL routing Views Serializer External layers Summary Chapter 7: Event-Driven Structures Sending events Asynchronous tasks Subdividing tasks Scheduled tasks Queue effects Single code for all workers Cloud queues and workers Celery Configuring Celery Celery worker Triggering tasks Connecting the dots Scheduled tasks Celery Flower Flower HTTP API Summary Chapter 8: Advanced Event-Driven Structures Streaming events Pipelines Preparation Base task Image task Video task Connecting the tasks Running the task Defining a bus More complex systems Testing event-driven systems Summary Chapter 9: Microservices vs Monolith Monolithic architecture The microservices architecture Which architecture to choose A side note about similar designs The key factor – team communication Moving from a monolith to microservices Challenges for the migration A move in four acts 1. Analyze 2. Design 3. Plan 4. Execute Containerizing services Building and running an image Building and running a web service uWSGI configuration nginx configuration Start script Building and running Caveats Orchestration and Kubernetes Summary Part III Chapter 10: Testing and TDD Testing the code Different levels of testing Unit tests Integration tests System tests Testing philosophy How to design a great test Structuring tests Test-Driven Development Introducing TDD into new teams Problems and limitations Example of the TDD process Introduction to unit testing in Python Python unittest Pytest Testing external dependencies Mocking Dependency injection Dependency injection in OOP Advanced pytest Grouping tests Using fixtures Summary Chapter 11: Package Management The creation of a new package Trivial packaging in Python The Python packaging ecosystem PyPI Virtual environments Preparing an environment A note on containers Python packages Creating a package Development mode Pure Python package Cython Python package with binary code Uploading your package to PyPI Creating your own private index Summary Part IV Chapter 12: Logging Log basics Producing logs in Python Detecting problems through logs Detecting expected errors Capturing unexpected errors Log strategies Adding logs while developing Log limitations Summary Chapter 13: Metrics Metrics versus logs Kinds of metrics Generating metrics with Prometheus Preparing the environment Configuring Django Prometheus Checking the metrics Starting a Prometheus server Querying Prometheus Proactively working with metrics Alerting Summary Chapter 14: Profiling Profiling basics Types of profilers Profiling code for time Using the built-in cProfile module Line profiler Partial profiling Example web server returning prime numbers Profiling the whole process Generating a profile file per request Memory profiling Using memory_profiler Memory optimization Summary Chapter 15: Debugging Detecting and processing defects Investigation in production Understanding the problem in production Logging a request ID Analyzing data Increasing logging Local debugging Python introspection tools Debugging with logs Debugging with breakpoints Summary Chapter 16: Ongoing Architecture Adjusting the architecture Scheduled downtime Maintenance window Incidents Postmortem analysis Premortem analysis Load testing Versioning Backward compatibility Incremental changes Deploying without interruption Feature flags Teamwork aspects of changes Summary PacktPage Other Books You May Enjoy Index