ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Pulse and Digital Circuits : For JNTUK

دانلود کتاب مدارهای پالس و دیجیتال: برای JNTUK

Pulse and Digital Circuits : For JNTUK

مشخصات کتاب

Pulse and Digital Circuits : For JNTUK

ویرایش:  
نویسندگان: , ,   
سری:  
ISBN (شابک) : 9788131768990, 9788131798942 
ناشر: Pearson Education 
سال نشر: 2012 
تعداد صفحات: [612] 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 8 Mb 

قیمت کتاب (تومان) : 51,000

در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 8


در صورت تبدیل فایل کتاب Pulse and Digital Circuits : For JNTUK به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب مدارهای پالس و دیجیتال: برای JNTUK نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی درمورد کتاب به خارجی



فهرست مطالب

Cover
Brief Contents
Contents
Preface
Chapter 1: An Introduction to Pulse Waveforms
	1.1 Introduction
	1.2 Current and Voltage Sources
	1.3 Network Laws
		1.3.1 Kirchoff's Laws
		1.3.2 The Superposition Theorem
		1.3.3 Thévenin's Theorem
		1.3.4 Norton's Theorem
	1.4 Devices, Characteristics and Applications
		1.4.1 Diodes
		1.4.2 Bipolar Junction Transistors
		1.4.3 Amplifiers
		1.4.4 The Three Basic Amplifiers
		1.4.5 Multi-stage Amplifiers
		1.4.6 Feedback in Amplifiers
		1.4.7 Noise
	1.5 Operational Amplifiers
	1.6 Oscillators
	1.7 CC Amplifier as a Power Amplifier
	1.8 Miller’s Theorem
		1.8.1 The Dual of Miller's Theorem
	1.9 Ground in a Circuit
	1.10 Stray Capacitances in Devices
	1.11 Field-effect Transistors
	1.12 Characteristics of PulseWaveforms
		1.12.1 Types of Waveforms Used in Pulse Circuits
		1.12.2 Energy Storage Elements
	1.13 Laplace Transforms
		1.13.1 Basic Properties of Laplace Transformation
Chapter 2: Linear Waveshaping: High-pass Circuits
	2.1 Introduction
	2.2 High-pass Circuits
		2.2.1 Response of the High-pass RC Circuit to Sinusoidal Input
		2.2.2 Response of the High-pass RC Circuit to Step Input
		2.2.3 Response of the High-pass RC Circuit to Pulse Input
		2.2.4 Response of the High-pass RC Circuit to Square-wave Input
		2.2.5 Response of the High-pass RC Circuit to Exponential Input
		2.2.6 Response of the High-pass RC Circuit to Ramp Input
	2.3 Differentiators
		2.3.1 A High-pass RC Circuit as a Differentiator
		2.3.2 An Op-amp as a Differentiator
		2.3.3 Double Differentiators
	2.4 The Response of a High-pass RL Circuit to Step Input
	Solved Problems
	Summary
	Multiple Choice Questions
	Short Answer Questions
	Long Answer Questions
	Unsolved Problems
Chapter 3: Linear Waveshaping: Low-pass Circuits, Attenuators and RLC Circuits
	3.1 Introduction
	3.2 Low-pass Circuits
		3.2.1 The Response of a Low-pass RC Circuit to Sinusoidal Input
		3.2.2 The Response of a Low-pass RC Circuit to Step Input
		3.2.3 The Response of a Low-pass RC Circuit to Pulse Input
		3.2.4 The Response of a Low-pass RC Circuit to a Square-wave Input
		3.2.5 The Response of a Low-pass RC Circuit to Exponential Input
		3.2.6 The Response of a Low-pass RC Circuit to Ramp Input
		3.2.7 A Low-pass RC Circuit as an Integrator
		3.2.8 An Op-amp as an Integrator
		3.2.9 Low-pass RL Circuits
	3.3 Attenuators
		3.3.1 Uncompensated Attenuators
		3.3.2 Compensated Attenuators
	3.4 RLC Circuits
		3.4.1 The Response of the RLC Parallel Circuit to a Step Input
		3.4.2 The Response of the RLC Series Circuit to a Step Input
		3.4.3 RLC Ringing Circuits
	Solved Problems
	Summary
	Multiple Choice Questions
	Short Answer Questions
	Long Answer Questions
	Unsolved Problems
Chapter 4: Non-linear Waveshaping: Clipping Circuits and Comparators
	4.1 Introduction
	4.2 Diodes as Switches
		4.2.1 The Semiconductor Diode as a Switch
		4.2.2 The Zener Diode as a Switch
	4.3 Clipping Circuits
		4.3.1 Series Clippers
		4.3.2 Shunt Clippers
		4.3.3 Two-level Clippers
		4.3.4 Noise Clippers
	4.4 Comparators
		4.4.1 Diode Comparators
		4.4.2 The Double Differentiator as a Comparator
	4.5 Applications of Comparators
	Solved Problems
	Summary
	Multiple Choice Questions
	Short Answer Questions
	Long Answer Questions
	Unsolved Problems
Chapter 5: Non-linear Waveshaping: Clamping Circuits
	5.1 Introduction
	5.2 The Clamping Circuit
		5.2.1 The Clamping Circuit for Varying Input Amplitude
		5.2.2 The Practical Clamping Circuit
		5.2.3 Clamping the Output to a Reference Voltage (VR)
		5.2.4 The Design of a Clamping Circuit
	5.3 The Effect of Diode Characteristics on the Clamping Voltage
	5.4 Synchronized Clamping
	5.5 The Clamping Circuit Theorem
	Solved Problems
	Summary
	Multiple Choice Questions
	Short Answer Questions
	Long Answer Questions
	Unsolved Problems
Chapter 6: Switching Characteristics of Devices
	6.1 Introduction
	6.2 The Diode as a Switch
		6.2.1 Diode Characteristics
		6.2.2 Transition Capacitance
		6.2.3 Diffusion Capacitance
		6.2.4 Junction Diode Switching Times
		6.2.5 Piecewise Linear Diode Model
		6.2.6 Breakdown Diodes
	6.3 The Transistor as a Switch
		6.3.1 The Transistor as an Open Switch
		6.3.2 The Transistor as a Closed Switch
		6.3.3 Over-driven Transistor Switches
		6.3.4 The Design of a Transistor Inverter
	6.4 Switching Times of a Transistor
		6.4.1 The Turn-on Time of a Transistor
		6.4.2 The Turn-off Time of a Transistor
	6.5 Breakdown Voltages
		6.5.1 The CE Configuration
		6.5.2 The Breakdown Voltage with Base Not Open Circuited
	6.6 The Saturation Parameters of a Transistor and their Variation with Temperature
	6.7 Latching in a Transistor Switch
	6.8 Transistor Switches with Complex Loads
		6.8.1 Switches with Inductive Loads
		6.8.2 Switches with Capacitive Loads
	Solved Problems
	Summary
	Multiple Choice Questions
	Short Answer Questions
	Long Answer Questions
	Unsolved Problems
Chapter 7: Astable Multivibrators
	7.1 Introduction
	7.2 Collector-coupled Astable Multivibrators
		7.2.1 Calculation of the Frequency of an Astable Multivibrator
		7.2.2 The Design of an Astable Multivibrator
		7.2.3 An Astable Multivibrator with Vertical Edges for Collector Waveforms
	7.3 An Astable Multivibrator as a Voltage-controlled Oscillator
	7.4 An Astable Multivibrator as a Frequency Modulator
	7.5 Emitter-coupled Astable Multivibrators
		7.5.1 Advantages of Emitter-coupled Astable Multivibrators
		7.5.2 Disadvantages of Emitter-coupled Astable Multivibrators
	Solved Problems
	Summary
	Multiple Choice Questions
	Short Answer Questions
	Long Answer Questions
	Unsolved Problems
Chapter 8: Monostable Multivibrators
	8.1 Introduction
	8.2 Collector-coupled Monostable Multivibrators
		8.2.1 Triggering a Monostable Multivibrator
		8.2.2 Calculation of the Time Period (T)
		8.2.3 The Effect of Temperature on Gate Width
	8.3 Calculation of the Voltages to Plot the Waveforms
		8.3.1 In the Stable State (t < 0)
		8.3.2 In the Quasi-stable State (t = 0+)
		8.3.3 At the End of the Quasi-stable State (at t = T+)
		8.3.4 The Design of a Collector-coupled Monostable Multivibrator
	8.4 Commutating Condensers
		8.4.1 Calculation of the Value of the Commutating Condenser
		8.4.2 A Monostable Multivibrator as a Voltage-to-time Converter
	8.5 Emitter-coupled Monostable Multivibrators
		8.5.1 To Calculate the Gate Width (T)
		8.5.2 To Calculate the Voltages
		8.5.3 The Design of an Emitter-coupled Monostable Multivibrator
		8.5.4 Free-running Operation of an Emitter-coupled Monostable Multivibrator
	Solved Problems
	Summary
	Multiple Choice Questions
	Short Answer Questions
	Long Answer Questions
	Unsolved Problems
Chapter 9: Bistable Multivibrators
	9.1 Introduction
	9.2 Bistable Multivibrator Circuits
		9.2.1 Fixed-bias Bistable Multivibrators
		9.2.2 The Resolution Time and the Maximum Switching Speed of a Bistable Multivibrator
		9.2.3 Methods of Triggering a Bistable Multivibrator
		9.2.4 Non-saturating Bistable Multivibrators
	9.3 Self-bias Bistable Multivibrators
		9.3.1 The Heaviest Load Driven by a Self-bias Bistable Multivibrator
		9.3.2 The Design of a Self-bias Bistable Multivibrator
	9.4 Schmitt Triggers
		9.4.1 Calculation of the Upper Trip Point (V1)
		9.4.2 Calculation of the Lower Trip Point (V2)
		9.4.3 Methods to Eliminate Hysteresis in a Schmitt Trigger
		9.4.4 Applications of a Schmitt Trigger
		9.4.5 The Design of a Schmitt Trigger
	Solved Problems
	Summary
	Multiple Choice Questions
	Short Answer Questions
	Long Answer Questions
	Unsolved Problems
Chapter 10: Logic Gates
	10.1 Introduction
	10.2 Logic Gates
		10.2.1 Simple Diode Gates
		10.2.2 Resistor–Transistor Logic Gates
		10.2.3 Diode–Transistor Logic Gates
	10.3 Factors Defining the Performance of Logic Gates
	10.4 Positive Logic, Negative Logic and Logic Circuit Conversion
		10.4.1 Transistor–Transistor Logic Gates
		10.4.2 PMOS and NMOS Logic Gates
		10.4.3 Complementary MOSFET Logic Gates
		10.4.4 Interfacing of Logic Gates
	Solved Problems
	Summary
	Multiple Choice Questions
	Short Answer Questions
	Long Answer Questions
	Unsolved Problems
Chapter 11: Sampling Gates
	11.1 Introduction
	11.2 Unidirectional Diode Gates
		11.2.1 Unidirectional Diode Gates to Transmit Positive Pulses
		11.2.2 Unidirectional Diode Gates
		11.2.3 A Unidirectional Diode Gate to Transmit Negative Pulses
	11.3 Bidirectional Sampling Gates
		11.3.1 Single-transistor Bidirectional Sampling Gates
		11.3.2 Two-transistor Bidirectional Sampling Gates
		11.3.3 A Two-transistor Bidirectional Sampling Gate that Reduces the Pedestal
		11.3.4 A Two-diode Bridge Type Bidirectional Sampling Gate that Eliminates the Pedestal
		11.3.5 Four-diode Gates
		11.3.6 Six-diode Gates
	11.4 FET Sampling Gates
		11.4.1 FET Series Gates
		11.4.2 FET Shunt Gates
		11.4.3 Op-amps as Sampling Gates
	11.5 Applications of Sampling Gates
		11.5.1 Chopper Stabilized Amplifiers
		11.5.2 Sampling Scopes
		11.5.3 Multiplexers
	Solved Problems
	Summary
	Multiple Choice Questions
	Short Answer Questions
	Long Answer Questions
	Unsolved Problems
Chapter 12: Voltage Sweep Generators
	12.1 Introduction
	12.2 Exponential Sweep Generators
		12.2.1 A Voltage Sweep Generator Using a UJT
		12.2.2 Generation of Linear Sweep Using the CB Configuration
	12.3 Improving Sweep Linearity
		12.3.1 Miller Integrator Sweep Generators
		12.3.2 Bootstrap Sweep Generators
	Solved Problems
	Summary
	Multiple Choice Questions
	Short Answer Questions
	Long Answer Questions
	Unsolved Problems
Chapter 13: Current Sweep Generators
	13.1 Introduction
		13.1.1 A Simple Current Sweep Generator
		13.1.2 Linearity Correction through Adjustment of the Driving Waveform
	13.2 A Transistor Television Sweep Circuit
	Solved Problems
	Summary
	Multiple Choice Questions
	Short Answer Questions
	Long Answer Questions
	Unsolved Problems
Chapter 14: Blocking Oscillators
	14.1 Introduction
	14.2 Monostable Blocking Oscillators
		14.2.1 A Triggered Transistor Monostable Blocking Oscillator (Base Timing)
		14.2.2 A Triggered Transistor Blocking Oscillator (Emitter Timing)
	14.3 Astable Blocking Oscillators
		14.3.1 Diode-controlled Astable Blocking Oscillators
		14.3.2 RC-controlled Astable Blocking Oscillators
		14.3.3 Effect of Core Saturation on Pulse Width
		14.3.4 Applications of Blocking Oscillators
	Solved Problems
	Summary
	Multiple Choice Questions
	Short Answer Questions
	Long Answer Questions
	Unsolved Problems
Chapter 15: Synchronization and Frequency Division
	15.1 Introduction
	15.2 Pulse Synchronization of Relaxation Devices
		15.2.1 Frequency Division in a Sweep Circuit
	15.3 Synchronization of Other Relaxation Circuits
		15.3.1 Synchronization of Astable Blocking Oscillators
		15.3.2 Synchronization of Transistor Astable Multivibrators
		15.3.3 Synchronization with Division of an Astable Multivibrator by Applying Negative Pulses at both the Bases (B1 and B2)
		15.3.4 Positive Pulses Applied to B1 Through a Small Capacitor from a Low-impedance Source
	15.4 A Monostable Multivibrator as a Divider
		15.4.1 A Relaxation Divider that Eliminates Phase Jitter
	15.5 Synchronization of a Sweep Circuit with Symmetrical Signals
		15.5.1 Frequency Division with Symmetric Sync Signals
	Solved Problems
	Summary
	Multiple Choice Questions
	Short Answer Questions
	Long Answer Questions
	Unsolved Problems
Model Question Papers
	Model Question Papers-I
	Model Question Papers-II
	Model Question Papers-III
	Model Question Papers-IV
	Solutions to Model Question Paper-I
	Solutions to Model Question Paper-II
Index




نظرات کاربران