دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: نویسندگان: Venkata Rao K., Rama Sudha K., Manmadha Rao G. سری: ISBN (شابک) : 9788131768990, 9788131798942 ناشر: Pearson Education سال نشر: 2012 تعداد صفحات: [612] زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 8 Mb
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Pulse and Digital Circuits : For JNTUK به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب مدارهای پالس و دیجیتال: برای JNTUK نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Cover Brief Contents Contents Preface Chapter 1: An Introduction to Pulse Waveforms 1.1 Introduction 1.2 Current and Voltage Sources 1.3 Network Laws 1.3.1 Kirchoff's Laws 1.3.2 The Superposition Theorem 1.3.3 Thévenin's Theorem 1.3.4 Norton's Theorem 1.4 Devices, Characteristics and Applications 1.4.1 Diodes 1.4.2 Bipolar Junction Transistors 1.4.3 Amplifiers 1.4.4 The Three Basic Amplifiers 1.4.5 Multi-stage Amplifiers 1.4.6 Feedback in Amplifiers 1.4.7 Noise 1.5 Operational Amplifiers 1.6 Oscillators 1.7 CC Amplifier as a Power Amplifier 1.8 Miller’s Theorem 1.8.1 The Dual of Miller's Theorem 1.9 Ground in a Circuit 1.10 Stray Capacitances in Devices 1.11 Field-effect Transistors 1.12 Characteristics of PulseWaveforms 1.12.1 Types of Waveforms Used in Pulse Circuits 1.12.2 Energy Storage Elements 1.13 Laplace Transforms 1.13.1 Basic Properties of Laplace Transformation Chapter 2: Linear Waveshaping: High-pass Circuits 2.1 Introduction 2.2 High-pass Circuits 2.2.1 Response of the High-pass RC Circuit to Sinusoidal Input 2.2.2 Response of the High-pass RC Circuit to Step Input 2.2.3 Response of the High-pass RC Circuit to Pulse Input 2.2.4 Response of the High-pass RC Circuit to Square-wave Input 2.2.5 Response of the High-pass RC Circuit to Exponential Input 2.2.6 Response of the High-pass RC Circuit to Ramp Input 2.3 Differentiators 2.3.1 A High-pass RC Circuit as a Differentiator 2.3.2 An Op-amp as a Differentiator 2.3.3 Double Differentiators 2.4 The Response of a High-pass RL Circuit to Step Input Solved Problems Summary Multiple Choice Questions Short Answer Questions Long Answer Questions Unsolved Problems Chapter 3: Linear Waveshaping: Low-pass Circuits, Attenuators and RLC Circuits 3.1 Introduction 3.2 Low-pass Circuits 3.2.1 The Response of a Low-pass RC Circuit to Sinusoidal Input 3.2.2 The Response of a Low-pass RC Circuit to Step Input 3.2.3 The Response of a Low-pass RC Circuit to Pulse Input 3.2.4 The Response of a Low-pass RC Circuit to a Square-wave Input 3.2.5 The Response of a Low-pass RC Circuit to Exponential Input 3.2.6 The Response of a Low-pass RC Circuit to Ramp Input 3.2.7 A Low-pass RC Circuit as an Integrator 3.2.8 An Op-amp as an Integrator 3.2.9 Low-pass RL Circuits 3.3 Attenuators 3.3.1 Uncompensated Attenuators 3.3.2 Compensated Attenuators 3.4 RLC Circuits 3.4.1 The Response of the RLC Parallel Circuit to a Step Input 3.4.2 The Response of the RLC Series Circuit to a Step Input 3.4.3 RLC Ringing Circuits Solved Problems Summary Multiple Choice Questions Short Answer Questions Long Answer Questions Unsolved Problems Chapter 4: Non-linear Waveshaping: Clipping Circuits and Comparators 4.1 Introduction 4.2 Diodes as Switches 4.2.1 The Semiconductor Diode as a Switch 4.2.2 The Zener Diode as a Switch 4.3 Clipping Circuits 4.3.1 Series Clippers 4.3.2 Shunt Clippers 4.3.3 Two-level Clippers 4.3.4 Noise Clippers 4.4 Comparators 4.4.1 Diode Comparators 4.4.2 The Double Differentiator as a Comparator 4.5 Applications of Comparators Solved Problems Summary Multiple Choice Questions Short Answer Questions Long Answer Questions Unsolved Problems Chapter 5: Non-linear Waveshaping: Clamping Circuits 5.1 Introduction 5.2 The Clamping Circuit 5.2.1 The Clamping Circuit for Varying Input Amplitude 5.2.2 The Practical Clamping Circuit 5.2.3 Clamping the Output to a Reference Voltage (VR) 5.2.4 The Design of a Clamping Circuit 5.3 The Effect of Diode Characteristics on the Clamping Voltage 5.4 Synchronized Clamping 5.5 The Clamping Circuit Theorem Solved Problems Summary Multiple Choice Questions Short Answer Questions Long Answer Questions Unsolved Problems Chapter 6: Switching Characteristics of Devices 6.1 Introduction 6.2 The Diode as a Switch 6.2.1 Diode Characteristics 6.2.2 Transition Capacitance 6.2.3 Diffusion Capacitance 6.2.4 Junction Diode Switching Times 6.2.5 Piecewise Linear Diode Model 6.2.6 Breakdown Diodes 6.3 The Transistor as a Switch 6.3.1 The Transistor as an Open Switch 6.3.2 The Transistor as a Closed Switch 6.3.3 Over-driven Transistor Switches 6.3.4 The Design of a Transistor Inverter 6.4 Switching Times of a Transistor 6.4.1 The Turn-on Time of a Transistor 6.4.2 The Turn-off Time of a Transistor 6.5 Breakdown Voltages 6.5.1 The CE Configuration 6.5.2 The Breakdown Voltage with Base Not Open Circuited 6.6 The Saturation Parameters of a Transistor and their Variation with Temperature 6.7 Latching in a Transistor Switch 6.8 Transistor Switches with Complex Loads 6.8.1 Switches with Inductive Loads 6.8.2 Switches with Capacitive Loads Solved Problems Summary Multiple Choice Questions Short Answer Questions Long Answer Questions Unsolved Problems Chapter 7: Astable Multivibrators 7.1 Introduction 7.2 Collector-coupled Astable Multivibrators 7.2.1 Calculation of the Frequency of an Astable Multivibrator 7.2.2 The Design of an Astable Multivibrator 7.2.3 An Astable Multivibrator with Vertical Edges for Collector Waveforms 7.3 An Astable Multivibrator as a Voltage-controlled Oscillator 7.4 An Astable Multivibrator as a Frequency Modulator 7.5 Emitter-coupled Astable Multivibrators 7.5.1 Advantages of Emitter-coupled Astable Multivibrators 7.5.2 Disadvantages of Emitter-coupled Astable Multivibrators Solved Problems Summary Multiple Choice Questions Short Answer Questions Long Answer Questions Unsolved Problems Chapter 8: Monostable Multivibrators 8.1 Introduction 8.2 Collector-coupled Monostable Multivibrators 8.2.1 Triggering a Monostable Multivibrator 8.2.2 Calculation of the Time Period (T) 8.2.3 The Effect of Temperature on Gate Width 8.3 Calculation of the Voltages to Plot the Waveforms 8.3.1 In the Stable State (t < 0) 8.3.2 In the Quasi-stable State (t = 0+) 8.3.3 At the End of the Quasi-stable State (at t = T+) 8.3.4 The Design of a Collector-coupled Monostable Multivibrator 8.4 Commutating Condensers 8.4.1 Calculation of the Value of the Commutating Condenser 8.4.2 A Monostable Multivibrator as a Voltage-to-time Converter 8.5 Emitter-coupled Monostable Multivibrators 8.5.1 To Calculate the Gate Width (T) 8.5.2 To Calculate the Voltages 8.5.3 The Design of an Emitter-coupled Monostable Multivibrator 8.5.4 Free-running Operation of an Emitter-coupled Monostable Multivibrator Solved Problems Summary Multiple Choice Questions Short Answer Questions Long Answer Questions Unsolved Problems Chapter 9: Bistable Multivibrators 9.1 Introduction 9.2 Bistable Multivibrator Circuits 9.2.1 Fixed-bias Bistable Multivibrators 9.2.2 The Resolution Time and the Maximum Switching Speed of a Bistable Multivibrator 9.2.3 Methods of Triggering a Bistable Multivibrator 9.2.4 Non-saturating Bistable Multivibrators 9.3 Self-bias Bistable Multivibrators 9.3.1 The Heaviest Load Driven by a Self-bias Bistable Multivibrator 9.3.2 The Design of a Self-bias Bistable Multivibrator 9.4 Schmitt Triggers 9.4.1 Calculation of the Upper Trip Point (V1) 9.4.2 Calculation of the Lower Trip Point (V2) 9.4.3 Methods to Eliminate Hysteresis in a Schmitt Trigger 9.4.4 Applications of a Schmitt Trigger 9.4.5 The Design of a Schmitt Trigger Solved Problems Summary Multiple Choice Questions Short Answer Questions Long Answer Questions Unsolved Problems Chapter 10: Logic Gates 10.1 Introduction 10.2 Logic Gates 10.2.1 Simple Diode Gates 10.2.2 Resistor–Transistor Logic Gates 10.2.3 Diode–Transistor Logic Gates 10.3 Factors Defining the Performance of Logic Gates 10.4 Positive Logic, Negative Logic and Logic Circuit Conversion 10.4.1 Transistor–Transistor Logic Gates 10.4.2 PMOS and NMOS Logic Gates 10.4.3 Complementary MOSFET Logic Gates 10.4.4 Interfacing of Logic Gates Solved Problems Summary Multiple Choice Questions Short Answer Questions Long Answer Questions Unsolved Problems Chapter 11: Sampling Gates 11.1 Introduction 11.2 Unidirectional Diode Gates 11.2.1 Unidirectional Diode Gates to Transmit Positive Pulses 11.2.2 Unidirectional Diode Gates 11.2.3 A Unidirectional Diode Gate to Transmit Negative Pulses 11.3 Bidirectional Sampling Gates 11.3.1 Single-transistor Bidirectional Sampling Gates 11.3.2 Two-transistor Bidirectional Sampling Gates 11.3.3 A Two-transistor Bidirectional Sampling Gate that Reduces the Pedestal 11.3.4 A Two-diode Bridge Type Bidirectional Sampling Gate that Eliminates the Pedestal 11.3.5 Four-diode Gates 11.3.6 Six-diode Gates 11.4 FET Sampling Gates 11.4.1 FET Series Gates 11.4.2 FET Shunt Gates 11.4.3 Op-amps as Sampling Gates 11.5 Applications of Sampling Gates 11.5.1 Chopper Stabilized Amplifiers 11.5.2 Sampling Scopes 11.5.3 Multiplexers Solved Problems Summary Multiple Choice Questions Short Answer Questions Long Answer Questions Unsolved Problems Chapter 12: Voltage Sweep Generators 12.1 Introduction 12.2 Exponential Sweep Generators 12.2.1 A Voltage Sweep Generator Using a UJT 12.2.2 Generation of Linear Sweep Using the CB Configuration 12.3 Improving Sweep Linearity 12.3.1 Miller Integrator Sweep Generators 12.3.2 Bootstrap Sweep Generators Solved Problems Summary Multiple Choice Questions Short Answer Questions Long Answer Questions Unsolved Problems Chapter 13: Current Sweep Generators 13.1 Introduction 13.1.1 A Simple Current Sweep Generator 13.1.2 Linearity Correction through Adjustment of the Driving Waveform 13.2 A Transistor Television Sweep Circuit Solved Problems Summary Multiple Choice Questions Short Answer Questions Long Answer Questions Unsolved Problems Chapter 14: Blocking Oscillators 14.1 Introduction 14.2 Monostable Blocking Oscillators 14.2.1 A Triggered Transistor Monostable Blocking Oscillator (Base Timing) 14.2.2 A Triggered Transistor Blocking Oscillator (Emitter Timing) 14.3 Astable Blocking Oscillators 14.3.1 Diode-controlled Astable Blocking Oscillators 14.3.2 RC-controlled Astable Blocking Oscillators 14.3.3 Effect of Core Saturation on Pulse Width 14.3.4 Applications of Blocking Oscillators Solved Problems Summary Multiple Choice Questions Short Answer Questions Long Answer Questions Unsolved Problems Chapter 15: Synchronization and Frequency Division 15.1 Introduction 15.2 Pulse Synchronization of Relaxation Devices 15.2.1 Frequency Division in a Sweep Circuit 15.3 Synchronization of Other Relaxation Circuits 15.3.1 Synchronization of Astable Blocking Oscillators 15.3.2 Synchronization of Transistor Astable Multivibrators 15.3.3 Synchronization with Division of an Astable Multivibrator by Applying Negative Pulses at both the Bases (B1 and B2) 15.3.4 Positive Pulses Applied to B1 Through a Small Capacitor from a Low-impedance Source 15.4 A Monostable Multivibrator as a Divider 15.4.1 A Relaxation Divider that Eliminates Phase Jitter 15.5 Synchronization of a Sweep Circuit with Symmetrical Signals 15.5.1 Frequency Division with Symmetric Sync Signals Solved Problems Summary Multiple Choice Questions Short Answer Questions Long Answer Questions Unsolved Problems Model Question Papers Model Question Papers-I Model Question Papers-II Model Question Papers-III Model Question Papers-IV Solutions to Model Question Paper-I Solutions to Model Question Paper-II Index