ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Proteoglycans in Stem Cells: From Development to Cancer

دانلود کتاب پروتئوگلیکان ها در سلول های بنیادی: از رشد تا سرطان

Proteoglycans in Stem Cells: From Development to Cancer

مشخصات کتاب

Proteoglycans in Stem Cells: From Development to Cancer

ویرایش: [1 ed.] 
نویسندگان: ,   
سری:  
ISBN (شابک) : 3030734528, 9783030734527 
ناشر: Springer 
سال نشر: 2021 
تعداد صفحات: 308
[314] 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 9 Mb 

قیمت کتاب (تومان) : 39,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 6


در صورت تبدیل فایل کتاب Proteoglycans in Stem Cells: From Development to Cancer به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب پروتئوگلیکان ها در سلول های بنیادی: از رشد تا سرطان نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب پروتئوگلیکان ها در سلول های بنیادی: از رشد تا سرطان

این کتاب خلاصه ای پیشرفته در مورد نقش پروتئوگلیکان ها و گلیکوزآمینوگلیکان ها در طول توسعه و سرطان ارائه می دهد. همچنین دستورالعمل هایی را برای کاربردهای درمانی و بیوتکنولوژیکی جدید در زیست شناسی سلول های بنیادی پیشنهاد می کند. پروتئوگلیکان ها و گلیکوزآمینوگلیکان ها، به عنوان بخشی از ماتریکس خارج سلولی، تعدیل کننده های چند منظوره فاکتور رشد، سیتوکین، اینتگرین و سیگنالینگ مورفوژن هستند که هم خود نوسازی، پیری و/یا تمایز سلول های بنیادی را در طول توسعه تعیین می کنند. از آنجایی که پروتئوگلیکان ها چسبندگی و مهاجرت سلولی را تعدیل می کنند، سازمان دهندگان مهم ماتریکس خارج سلولی در محل مناسب سلول های بنیادی هستند. عملکرد نادرست پروتئوگلیکان ها و گلیکوزآمینوگلیکان ها به فنوتیپ سلول های بنیادی سرطانی کمک می کند که با مقاومت درمانی و عود بیماری های بدخیم مرتبط است. خواندن این کتاب برای هر کسی که به ماتریکس خارج سلولی و نقش آن در توسعه علاقه مند است ضروری است. مجموعه Biology of Extracellular Matrix با همکاری انجمن آمریکایی زیست شناسی ماتریکس منتشر شده است.


توضیحاتی درمورد کتاب به خارجی

This book provides a state-of-the-art compendium on the role of proteoglycans and glycosaminoglycans during development and in cancer. It also suggests directions for novel therapeutic and biotechnological applications in stem cell biology. Proteoglycans and glycosaminoglycans, as part of the extracellular matrix, are multifunctional modulators of growth factor, cytokine, integrin and morphogen signaling, which determine both self-renewal, senescence and/or differentiation of stem cells during development. Since proteoglycans modulate cell adhesion and migration they are important organizers of the extracellular matrix within the proper stem cell niche. A malfunctioning of proteoglycans and glycosaminoglycans contributes to the cancer stem cell phenotype, which is linked to therapeutic resistance and recurrence in malignant disease. This book is essential reading for anyone interested in the extracellular matrix and its role in development. The series Biology of Extracellular Matrix is published in collaboration with the American Society for Matrix Biology.



فهرست مطالب

Preface
Contents
About the Editors
Chapter 1: Heparan Sulfate Proteoglycans in the Stem Cell Niche: Lessons from Drosophila
	1.1 Introduction
	1.2 Heparan Sulfate Proteoglycans Regulate Stem Cell Number in the Drosophila Germline Stem Cell Niche
		1.2.1 The Drosophila Female Germline Stem Cell Niche in the Ovary
		1.2.2 Dally Regulates Stem Cell Number in the GSC Niche
		1.2.3 The Drosophila Male Germline Stem Cell Niche in the Testis
		1.2.4 HS in the Niche Regulates GSC Asymmetric Division
		1.2.5 HS in the Niche Prevents Tumor Formation in the Testis
	1.3 Heparan Sulfate Proteoglycans Regulate Stem Cell Replacement in the Drosophila Follicle Stem Cell Niche
		1.3.1 The Drosophila Ovarian Follicle Stem Cell Niche and Stem Cell Quality Control
		1.3.2 Glypicans Regulate Follicle Stem Cell Competition
	1.4 Heparan Sulfate Proteoglycans Regulate Stem Cell Activity in the Drosophila Midgut
		1.4.1 The Drosophila Midgut Intestinal Stem Cells
		1.4.2 HSPGs Regulate Damage-Induced Activation of ISCs
		1.4.3 Sulf1 Is Required for ISC Inactivation at Late Stages of Regeneration
	1.5 Concluding Remarks
	References
Chapter 2: Proteoglycans in Zebrafish Development
	2.1 Studying Development in Zebrafish
	2.2 Loss of Gene Function Experiments in Zebrafish
	2.3 Glycosaminoglycan Biosynthesis
	2.4 Structure and Amounts of HS and CS/DS During Zebrafish Development
	2.5 Maternal Contribution
	2.6 Craniofacial Phenotypes
	2.7 Phenotypes Associated with Altered HS Production
	2.8 Morpholino Studies
	2.9 Genetic Mutants in CS/DS Biosynthesis Remain to Be Described
	2.10 Hyaluronan
	2.11 Concluding Remarks
	References
Chapter 3: The Pivotal Role of Versican Turnover by ADAMTS Proteases in Mammalian Reproduction and Development
	3.1 The Provisional Extracellular Matrix of the Mammalian Embryo
	3.2 Overview of the ADAMTS Proteases and Versican
	3.3 Versican Turnover During Ovulation and Role of ADAMTS Proteases in Fertility
	3.4 ADAMTS9 Is Essential for Myometrial Activation and Parturition
	3.5 ADAMTS Proteolysis of Versican in the Maternal-Fetal Interface
	3.6 ADAMTS Proteolysis of Versican During Morphogenesis
	3.7 Summary
	References
Chapter 4: Use of Chondroitin Sulphate to Aid In Vitro Stem Cell Differentiation
	4.1 Introduction
	4.2 CS Sulphation Motifs Regulate Cell Behaviour, Can They Be Used to Promote Tissue Repair?
		4.2.1 Evolution of GAGs as Cellular Mediator Molecules
		4.2.2 GAG Sulphation Motifs as Molecular Recognition and Information Transfer Motifs Which Direct Cellular Behaviour
	4.3 Stem Cells Are Responsive to Biomechanical Stimuli from the ECM
	4.4 Phylogenetic Conservation of GAG Structure in Vertebrate and Invertebrate Evolution
	4.5 CS Sulphation Motifs Identified by Antibodies 4-C-3, 7-D-4 and 3-B-3(-)
		4.5.1 Identification of the CS Hydrolase: ``the Mammalian Chondroitinase´´ as the Generator of the 3-B-3(-) and 2-B-6(-) CS Su...
	4.6 GAGs and Tissue Repair: GAG Bioscaffolds Which Promote Stem Cell Differentiation
		4.6.1 Prospective Roles for Biglycan, Decorin and FGF-18 in Osteogenesis
			4.6.1.1 Biglycan and Decorin, Modulate Bone Marrow Stromal Cell Differentiation, Co-ordinate TGF-β Sequestration in the ECM an...
	4.7 FGF-18 Induces Osteogenic Differentiation of Chondrocytes and CS Sulfation Motif Expression by Osteoprogenitor Stem Cells ...
		4.7.1 FGF-18 Induces Expression of Specific CS Sulfation Motifs by Osteoprogenitor Cells
		4.7.2 Modulation of Stem Cell Activity by Extrinsic Forces
	4.8 CS Bioscaffolds and Their Instructional Properties Over MSC Differentiation
	4.9 Expression of the 7-D-4, 3-B-3(-) and 4-C-3 CS Sulphation Motifs Are Upregulated During Osteogenic Differentiation and Sti...
	4.10 Concluding Remarks
	References
Chapter 5: Regulatory Functions of Heparan Sulfate in Stem Cell Self-Renewal and Differentiation
	5.1 Introduction
	5.2 Heparan Sulfate
	5.3 Heparan Sulfate Expression During Embryonic Stem Cell Self-Renewal and Differentiation
	5.4 Heparan Sulfate Regulates ESC Self-Renewal and Related Signaling
	5.5 Heparan Sulfate Regulates Embryonic Stem Cell Differentiation and Related Signaling
	5.6 Heparan Sulfate Regulates Neural Progenitor Stem Cell Differentiation and Related Signaling
	5.7 Heparan Sulfate Regulates Prostate Development and Prostate Stem Cell Activity
	5.8 Conclusions and Perspectives
	References
Chapter 6: Proteoglycans, Neurogenesis and Stem Cell Differentiation
	6.1 Proteoglycans
	6.2 Neurogenesis
		6.2.1 Human Embryonic Neurogenesis
		6.2.2 Adult Human Neurogenesis
		6.2.3 Understanding Human Neurogenesis: Evidence from Murine and Other Models
	6.3 Neural Cell Types
		6.3.1 Neurons
		6.3.2 Glial Cells: Astrocytes and Oligodendrocytes
			6.3.2.1 Astrocytes
			6.3.2.2 Oligodendrocytes
	6.4 The Neural Stem Cell Niche
		6.4.1 The Extracellular Matrix (ECM) and Cellular Components of the NSC Niche
		6.4.2 ECM Proteins in NSC Regulation
	6.5 HSPG Mediated Signalling in the Neural Niche
		6.5.1 FGF-2 and EGF
		6.5.2 Wnt/β-Catenin Pathway
		6.5.3 Sonic Hedgehog (Shh) Pathway
		6.5.4 Other Signalling Pathways
		6.5.5 Platelet-Derived Growth Factor (PDGF)
	6.6 HSPGs in Neural Development
		6.6.1 SDCs and Neurogenesis
		6.6.2 GPCs and Neurogenesis
		6.6.3 Matrix Localised Perlecan
	6.7 Stem Cell Classification
		6.7.1 Neural Stem Cell Characterisation
		6.7.2 Neural Stem Cell Expansion and Derivation
		6.7.3 Neurosphere Assay
		6.7.4 Adherent Monolayer
	6.8 Models of Human Neurogenesis
		6.8.1 Embryonic Stem Cell-Derived NSCs
		6.8.2 Induced Pluripotent Stem Cell (iPSC) Derived NSCs
	6.9 Human Mesenchymal Stem Cells
		6.9.1 Isolation
		6.9.2 Characterisation
		6.9.3 Expansion
		6.9.4 Differentiation
		6.9.5 hMSC-Induced Neurosphere Formation Versus Terminal Differentiation
	6.10 Where to Next?
		6.10.1 Heparan Sulfate PGs and Neural Stem Cells: A Target for Therapy?
		6.10.2 Approaches for Exploiting HSPGs as Therapeutic Targets
	6.11 Conclusion
	References
Chapter 7: Syndecan-3: A Signaling Conductor in the Musculoskeletal System
	7.1 Introduction
	7.2 Syndecans
		7.2.1 Syndecan Structure
		7.2.2 Syndecan Functions
	7.3 Syndecan-3
	7.4 Syndecan-3 in the Musculoskeletal System
		7.4.1 SDC3 in Muscle Development
		7.4.2 SDC3 in Muscle Regeneration, Aging, and Disease
		7.4.3 SDC3 in Cartilage Development, Regeneration, and Disease
		7.4.4 SDC3 in Osteogenesis
		7.4.5 Concluding Remarks
	References
Chapter 8: Proteoglycans of the Neural Stem Cell Niche
	8.1 Stem Cells in the Developing and Adult CNS
	8.2 The Neural Extracellular Matrix
	8.3 The Stem Cell Niche
	8.4 ECM of the Niche
	8.5 The GAG-Chains of Proteoglycans
	8.6 Heparan Sulfate GAGs
	8.7 Heparan Sulfate Proteoglycans
	8.8 Chondroitin Sulfate GAGs and CSPGs
	8.9 Discrete CS-GAG Structures
		8.9.1 The DSD-1-Epitope
		8.9.2 RPTP-zeta and Phosphacan
		8.9.3 Lecticans
		8.9.4 NG2/CSPG4
	8.10 Complex Glycans
	8.11 Glioblastoma Stem Cells
	8.12 Proteoglycans in GBM
	8.13 Concluding Remarks
	References
Chapter 9: Heparan Sulfate in Normal and Cancer Stem Cells of the Brain
	9.1 Neural Stem Cells and Brain Tumor Stem Cells
	9.2 Introduction to the Extracellular Matrix in Neural Stem Cells and Brain Tumors
	9.3 Extracellular Matrix Organization in the Brain
	9.4 Heparan Sulfate Proteoglycans and Their Biosynthesis, Modification and Degradation
	9.5 Heparan Sulfate in Neural Stem Cell Commitment and Differentiation
	9.6 Consequences for Brain Development When Heparan Sulfate Is Not Functional
	9.7 Glioblastoma
	9.8 Medulloblastoma
	9.9 Cancer Stem Cells Models of Malignant Brain Tumors
	9.10 Heparan Sulfate in Brain Tumors and Brain Tumor Stem Cells
	9.11 Concluding Remarks
	References
Chapter 10: The Hyaluronic Acid-CD44 Interaction in the Physio- and Pathological Stem Cell Niche
	10.1 Introduction
	10.2 The Stem Cell Niche: Types of Niche and ECM Aspects
		10.2.1 Different Stem Cell Niches
	10.3 CD44: The Stem Cell Marker and the Main Hyaluronan Receptor
		10.3.1 Structure: Exon Composition and Functional Domains
		10.3.2 Hyaluronan
	10.4 CD44-HA Interaction in the Stromal Cell from the Stem Cell Niche
		10.4.1 Biological Functions of CD44 Associated with Stemness Properties in the Niche
		10.4.2 CD44 as an ECM Molecules-Binding Protein
		10.4.3 CD44 as a Cell Surface Co-receptor
		10.4.4 CD44 as a Modulator of ABC Transporter Function
		10.4.5 CD44 as a Modulator of Hypoxia
		10.4.6 CD44 as a Modulator of Migration and Anchorage
		10.4.7 CD44 as a Modulator of Quiescence
		10.4.8 Cellular Components of the Niche Stroma
			10.4.8.1 MSCs
			10.4.8.2 Immune Cells
	10.5 CD44-HA Interaction in Tumor Transformation
	10.6 Conclusion
	References
Chapter 11: Proteoglycans in Glioma Stem Cells
	11.1 Introduction
	11.2 Proteoglycan Family Members and Protein Structure
	11.3 Gliomas
	11.4 Proteoglycan Functions in Glioma
	11.5 Proteoglycan Functions in Glioma Stem Cells
	11.6 Proteoglycans as Therapeutic Targets in Glioma
	11.7 Summary and Conclusions
	References
Chapter 12: Role of Syndecan-1 in Cancer Stem Cells
	12.1 The Cancer Stem Cell Hypothesis
	12.2 Cell-Surface Heparan Sulfate: A Versatile Integrator of Stemness-Related Signaling Events
		12.2.1 Wnt Signaling
		12.2.2 The Hedgehog Pathway
		12.2.3 Notch Signaling
		12.2.4 FGF Signaling
		12.2.5 The NF-κB/IL-6/JAK/STAT3-Signaling Axis
	12.3 Syndecan-1: A Modulator of Cancer Stem Cell Function
	12.4 Conclusions and Perspective
	References




نظرات کاربران