دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 1 نویسندگان: Chen. Guanrong, Fu. Xinchu, Small. Michael سری: ISBN (شابک) : 9781118534502, 1118762789 ناشر: Wiley سال نشر: 2014 تعداد صفحات: 330 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 5 مگابایت
کلمات کلیدی مربوط به کتاب پویایی انتشار در شبکه های پیچیده: مدل ها، روش ها و تجزیه و تحلیل پایداری: روش های اپیدمیولوژیک مدل ها، نظری. اپیدمیولوژی -- مدل های ریاضی. اپیدمیولوژی -- روش شناسی. بیوماتیک. پزشکی / پزشکی قانونی پزشکی / پیشگیرانه پزشکی / بهداشت عمومی استرالیا
در صورت تبدیل فایل کتاب Propagation dynamics on complex networks : models, methods and stability analysis به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب پویایی انتشار در شبکه های پیچیده: مدل ها، روش ها و تجزیه و تحلیل پایداری نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
موضوع نوظهور پویایی اپیدمی را در شبکههای پیچیده، از جمله نظریهها، روشها، و کاربردهای دنیای واقعی بررسی میکند
در طول تاریخ، بیماریهای همهگیر تهدیدی جدی برای زندگی انسانها بوده است. و در سال های اخیر گسترش بیماری های عفونی مانند دنگی، مالاریا، اچ آی وی و سارس توجه جهانی را به خود جلب کرده است. و در عصر تکنولوژی مدرن، گسترش حملات ویروس در اینترنت نیاز مبرم به دانش در مورد مدلسازی، تجزیه و تحلیل و کنترل در پویایی اپیدمی در شبکههای پیچیده را برجسته میکند.
برای پیشرفت تکنیکها، مشخص شده است که دانش بنیادی بیشتری در زمینه ریاضی و عددی در مورد نحوه مدلسازی، تحلیل و کنترل شبکههای دینامیکی اپیدمی مورد نیاز است. این کتاب پیشرفتهای اخیر در این موضوعات را بررسی میکند و به مسائل مربوط به سیستمهای اپیدمی مختلف میپردازد.
دینامیک انتشار در شبکههای پیچیده اکثر موضوعات کلیدی در این زمینه را پوشش میدهد و مطالب ارزشمندی را ارائه میدهد. منبعی برای دانشجویان فارغ التحصیل و محققان علاقه مند به علوم شبکه و سیستم های دینامیکی و زمینه های بین رشته ای مرتبط.
ویژگی های کلیدی:
اطلاعات را بررسی میکند. انتقال در شبکه های پیچیده، و تفاوت بین اطلاعات و گسترش همه گیری را بررسی می کند.
Explores the emerging subject of epidemic dynamics on complex networks, including theories, methods, and real-world applications
Throughout history epidemic diseases have presented a serious threat to human life, and in recent years the spread of infectious diseases such as dengue, malaria, HIV, and SARS has captured global attention; and in the modern technological age, the proliferation of virus attacks on the Internet highlights the emergent need for knowledge about modeling, analysis, and control in epidemic dynamics on complex networks.
For advancement of techniques, it has become clear that more fundamental knowledge will be needed in mathematical and numerical context about how epidemic dynamical networks can be modelled, analyzed, and controlled. This book explores recent progress in these topics and looks at issues relating to various epidemic systems.
Propagation Dynamics on Complex Networks covers most key topics in the field, and will provide a valuable resource for graduate students and researchers interested in network science and dynamical systems, and related interdisciplinary fields.
Key Features:
Examines information transmission on complex networks, and investigates the difference between information and epidemic spreading.
Content: Preface xi Summary xiii 1 Introduction 1 1.1 Motivation and background 1 1.2 A brief history of mathematical epidemiology 2 1.3 Organization of the book 5 References 6 2 Various epidemic models on complex networks 10 2.1 Multiple stage models 10 2.2 Staged progression models 13 2.3 Stochastic SIS model 17 2.4 Models with population mobility 19 2.5 Models in meta-populations 22 2.6 Models with effective contacts 24 2.7 Models with two distinct routes 26 2.8 Models with competing strains 28 2.9 Models with competing strains and saturated infectivity 31 2.10 Models with birth and death of nodes and links 33 2.11 Models on weighted networks 34 2.12 Models on directed networks 38 2.13 Models on colored networks 40 2.14 Discrete epidemic models 44 References 47 3 Epidemic threshold analysis 53 3.1 Threshold analysis by the direct method 53 3.2 Epidemic spreading efficiency threshold and epidemic threshold 69 3.3 Epidemic thresholds and basic reproduction numbers 76 References 98 4 Networked models for SARS and avian influenza 101 4.1 Network models of real diseases 101 4.2 Plausible models for propagation of the SARS virus 102 4.3 Clustering model for SARS transmission: Application to epidemic control and risk assessment 108 4.4 Small-world and scale-free models for SARS transmission 114 4.5 Super-spreaders and the rate of transmission 118 4.6 Scale-free distribution of avian influenza outbreaks 124 4.7 Stratified model of ordinary influenza 130 References 136 5 Infectivity functions 139 5.1 A model with nontrivial infectivity function 140 5.2 Saturated infectivity 143 5.3 Nonlinear infectivity for SIS model on scale-free networks 143 References 148 6 SIS models with an infective medium 150 6.1 SIS model with an infective medium 150 6.2 A modified SIS model with an infective medium 159 6.3 Epidemic models with vectors between two separated networks 162 6.4 Epidemic transmission on interdependent networks 167 6.4.1 Theoretical modeling 168 6.5 Discussions and remarks 179 References 181 7 Epidemic control and awareness 184 7.1 SIS model with awareness 184 7.2 Discrete-time SIS model with awareness 192 7.3 Spreading dynamics of a disease-awareness SIS model on complex networks 198 7.4 Remarks and discussions 201 References 203 8 Adaptive mechanism between dynamics and epidemics 207 8.1 Adaptive mechanism between dynamical synchronization and epidemic behavior on complex networks 207 8.2 Interplay between collective behavior and spreading dynamics 216 References 228 9 Epidemic control and immunization 231 9.1 SIS model with immunization 231 9.2 Edge targeted strategy for controlling epidemic spreading on scale-free networks 235 9.3 Remarks and discussions 237 References 239 10 Global stability analysis 240 10.1 Global stability analysis of the modified model with an infective medium 240 10.2 Global dynamics of the model with vectors between two separated networks 241 10.3 Global behavior of disease transmission on interdependent networks 247 10.4 Global behavior of epidemic transmissions 250 10.5 Global attractivity of a network-based epidemic SIS model 260 10.6 Global stability of an epidemic model with birth and death and adaptive weights 264 10.7 Global dynamics of a generalized epidemic model 268 References 274 11 Information diffusion and pathogen propagation 277 11.1 Information diffusion and propagation on complex networks 277 11.2 Interplay between information of disease spreading and epidemic dynamics 281 11.3 Discussions and remarks 284 References 286 Appendix A Proofs of theorems 289 A.1 Transition from discrete-time linear system to continuous-time linear system 289 A.2 Proof of Lemma 6.1 291 A.3 Proof of Theorem 10.4 291 A.4 Proof of Theorem 10.3 292 A.5 Proof of Theorem 10.42 296 Appendix B Further proofs of results 302 B.1 Eigenvalues of the matrix P F in (6.27) 302 B.2 The matrix in (6.32) 304 B.3 Proof of (7.6) in Chapter 7 305 B.4 The positiveness of \': proof of \' >
0 in Section 9.1.2 306 B.5 The relation between and in Section 9.1.3 308 Index 311