دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Ron Kimmel (editor). Xue-cheng Tai (editor)
سری: Handbook of Numerical Analysis
ISBN (شابک) : 0444641408, 9780444641403
ناشر: North-Holland
سال نشر: 2019
تعداد صفحات: 682
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 42 مگابایت
در صورت تبدیل فایل کتاب Processing, Analyzing and Learning of Images, Shapes, and Forms به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب پردازش ، تجزیه و تحلیل و یادگیری تصاویر ، اشکال و فرم ها نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
پردازش، تجزیه و تحلیل و یادگیری تصاویر، اشکال و فرمها: بخش 2، جلد 20، به بررسی تحولات معاصر مربوط به تجزیه و تحلیل و یادگیری تصاویر، اشکال و فرمها میپردازد، مدلهای ریاضی را پوشش میدهد. تکنیک های محاسباتی سریع جلد فصل انتشار متناوب: یک رویکرد هندسی برای همجوشی حسگر، ایجاد مدلهای پیشین مبتنی بر تلویزیون ساختیافته و روشهای اولیه-دوگانه مرتبط، رویکردهای بهینهسازی مبتنی بر نمودار برای یادگیری ماشین، کمیسازی عدم قطعیت و شبکهها، تجزیه و تحلیل شکل بیرونی از روشهای اعدادی کارآمد جریانهای گرادیان و مدلهای میدان فاز، پیشرفتهای اخیر در حذف نویز تصاویر با ارزش منیفولد، ثبت بهینه تصاویر، سطوح و اشکال، و بسیاری موارد دیگر.
Processing, Analyzing and Learning of Images, Shapes, and Forms: Part 2, Volume 20, surveys the contemporary developments relating to the analysis and learning of images, shapes and forms, covering mathematical models and quick computational techniques. Chapter cover Alternating Diffusion: A Geometric Approach for Sensor Fusion, Generating Structured TV-based Priors and Associated Primal-dual Methods, Graph-based Optimization Approaches for Machine Learning, Uncertainty Quantification and Networks, Extrinsic Shape Analysis from Boundary Representations, Efficient Numerical Methods for Gradient Flows and Phase-field Models, Recent Advances in Denoising of Manifold-Valued Images, Optimal Registration of Images, Surfaces and Shapes, and much more.
Copyright Contributors Preface Diffusion operators for multimodal data analysis Introduction Preliminaries: Diffusion Maps Alternating Diffusion Problem formulation: Metric spaces and probabilistic setting Illustrative example Algorithm Common manifold interpretation Observable operators Effective operators Self-adjoint operators for recovering hidden components Problem formulation Operator definition and analysis Discrete setting Applications Shape analysis Foetal heart rate recovery Sleep dynamics assessment Visualization Automatic annotation References Intrinsic and extrinsic operators for shape analysis Introduction Preliminaries Extrinsic and intrinsic geometry Intrinsic geometry Extrinsic geometry Operators and spectra Theoretical aspects and numerical analysis Basics of linear operators Equivalent strong and weak forms Variational formulation Eigenvalue problem PDEs and Green\'s functions Laplace equation Heat equation Wave and Schrödinger equations Generalization Operator derivation and discretization Finite and boundary element methods Discrete exterior calculus (DEC) Mixed methods and compositions Graph affinity Laplacian Variants and generalizations Operator properties and desiderata Operators and geometry Inverse problems Shape-from-operator Shape-from-spectrum Spectral shape analysis and applications Spectral analysis: From Euclidean space to manifold A signal processing viewpoint Multiresolution and hierarchical representation Spectral shape analysis and processing Spectral data analysis Spectral graph theory with applications Manifold learning and data science Spectral analysis: Point embedding, signature, and geometric descriptors Spectral embedding and segmentation Spectral distances Point signatures and descriptors Shape analysis and geometry processing Segmentation Skeletonization (and segmentation) Parameterization and remeshing Data compression Mesh smoothing and fairing Feature extraction Shape matching and correspondence Shape differences Shape retrieval Geometric (deep) learning Structure and vibration analysis Acoustics Shape optimization Reduced simulation Other aspects of spectral shape analysis Localized bases Bases for shape collections Numerical aspects Convergence Eigensolvers Accelerations and preconditioners Multiresolution, subsampling, and approximation methods Robustness Padé approximation of heat kernel and distance Relevant geometric operators Identity operator, area form, and mass matrix Discretization: Full mass matrix Discretization: Lumped mass matrix Laplace-Beltrami (intrinsic Laplacian) Harmonic functions Discretization Combinatorial and graph Laplacians Restricted Laplacian Scale invariant Laplacian Affine and equi-affine invariant Laplacian Anisotropic Laplacian Discretization Hessian and normal-restricted Hessian: A family of linearized energies Modified Dirichlet energy Hamiltonian operator and Schrödinger operator Curvature Laplacian Concavity-aware Laplacian Extrinsic and relative Dirac operators Extrinsic Dirac operator Df Relative Dirac operator DN Intrinsic Dirac operator DI Volumetric (extrinsic) Laplacian Hessian energy Single layer potential operator and kernel method Boundary element method (BEM) Dirichlet-to-Neumann operator (Poincaré-Steklov operator) Other extrinsic methods Summary and experiments Experiments Eigenfunctions Heat kernel signatures Segmentation Distance or dissimilarity Conclusion and future work Summary Future work Better understanding of existing operators Synthesizing new operators Task-dependent and learnable operators Acknowledgements References Operator-based representations of discrete tangent vector fields Abbreviations Abbreviations Abbreviations Introduction Organization Smooth functional vector fields Notation Directional derivative of functions Functional vector fields Flow maps Functional flow maps Lie bracket Discrete functional vector fields Notation Functions and vector fields Rotations Vectors to matrices Areas and inner products Interpolation Differential operators Divergence free vector fields Discrete integration by parts Directional derivative of functions Functional vector fields Duality Linearity Reconstruction Flow maps Functional flow maps Lie bracket Divergence-based functional vector fields Smooth DFVF Discrete DFVF Mixed Lie bracket operator Sparsity structure The Lie bracket of divergence-free vector fields Extraction of the commutator vector field Limitation: Loss of group structure The Lie bracket as a linear transformation on vector fields Application: Commutation-guided rescaling Application: As-commuting-as-possible vector fields Integrating the Lie bracket operator Application: Interpolation of vector fields Outlook Conclusion and future work References Active contour methods on arbitrary graphs based on partial differential equations Introduction Background and related work Active contours on graphs via geometric approximations of gradient and curvature Geometric gradient approximation on graphs Formulation Convergence for random geometric graphs Asymptotic analysis of approximation error Practical application Geometric curvature approximation on graphs Formulation Practical application Gaussian smoothing on graphs Active contours on graphs using a finite element framework Problem formulation and numerical approximation Locally constrained contour evolution Experimental results Conclusion References Fast operator-splitting algorithms for variational imaging models: Some recent developments Introduction Regularizers and associated variational models for image restoration Generalities Total variation regularization The Euler elastica regularization L1-Mean curvature and L1-Gaussian curvature energies Willmore bending energy Summary Basic results, notations and an introduction to operator-splitting methods Basic results and notations The Lie and Marchuk-Yanenko operator-splitting schemes for the time discretization of initial value problems Generalities Time discretization of the initial value problem (17) by the Lie scheme Asymptotic properties of the Lie and Marchuk-Yanenko schemes Operator splitting method for Euler elastica energy functional Formulation of the problem and operator-splitting solution methods On the solution of problem (44) On the solution of problem (45) On the solution of problem (46) An operator-splitting method for the Willmore energy-based variational model Formulation of the problem and operator-splitting solution methods On the solution of problem (77) On the solution of problem (78) Estimating γ An operator-splitting method for the L1-mean curvature variational model Operator-splitting methods for the ROF model Generalities: synopsis A first operator-splitting method A second operator-splitting method Conclusion Acknowledgements References From active contours to minimal geodesic paths: New solutions to active contours problems by Eikonal equations Introduction Outline Active contour models Edge-based active contour model The computation of the image gradient features The original active contour model Balloon force Geodesic active contour model Geometric active contour models with alignment terms The piecewise smooth Mumford-Shah model and the piecewise constant reduction model The piecewise smooth Mumford-Shah model Piecewise constant reduction of the full Mumford-Shah model Minimization of the piecewise constant active contour model Minimal paths for edge-based active contours problems Cohen-Kimmel minimal path model Finsler and Randers minimal paths Randers minimal paths Riemannian minimal paths Minimal paths for alignment active contours Randers alignment minimal paths Riemannian alignment minimal paths Orientation-lifted Randers minimal paths for Euler-Mumford elastica problem Euler-Mumford elastica problem and its Finsler metric interpretation Finsler elastica geodesic path for approximating the elastica curve Data-driven Finsler elastica metric Randers minimal paths for region-based active contours Hybrid active contour model A Randers metric interpretation to the hybrid energy Practical implementations Application to image segmentation Conclusion Acknowledgements References Computable invariants for curves and surfaces Introduction Scale invariant metric Scale invariant arc-length for planar curves Scale invariant metric for implicitly defined planar curves Scale invariant metric for surfaces Approximating the scale invariant Laplace-Beltrami operator for surfaces Equi-affine invariant metric Equi-affine invariant arc-length Equi-affine metric for surfaces Affine metric Affine invariant arc-length Affine metric for surfaces Voronoi diagram Approximating the Gaussian curvature Applications Self functional maps: A song of shapes and operators A question of representation Hearing shapes using invariant operators Shape from eigenfunctions A tale of two metrics Introduction to functional maps Self functional maps Self functional maps as surface signatures Object recognition Summary Acknowledgements References Solving PDEs on manifolds represented as point clouds and applications Introduction Solving PDEs on manifolds represented as point clouds Moving least square methods Local mesh method Solving Fokker-Planck equation for dynamic system Double well potential Rugged Mueller potential Solving PDEs on incomplete distance data Geometric understanding of point clouds data Construction of skeletons from point clouds Construction of conformal mappings from point clouds Nonrigid manifolds registration using LB eigenmap Conclusion Acknowledgements References Tighter continuous relaxations for MAP inference in discrete MRFs: A survey LP relaxation Tightening the polytope Cluster pursuit algorithms Cycles in the graph Searching for frustrated cycles Efficient MAP inference in a cycle Planar subproblems Tighter subgraph decompositions Global higher-order cliques Semidefinite programming-based relaxation Rounding schemes for SDP relaxation Problems where SDP relaxation has helped Characterizing tight relaxations Conclusion References Lagrangian methods for composite optimization Introduction The Lagrangian framework Lagrangian-based methods: Basic elements and mechanism Main difficulties with ALS Proximal mappings and minimization Application examples The convex setting Preliminaries on the convex model (CM) Proximal method of multipliers and fundamental Lagrangian-based schemes One scheme for all: A perturbed PMM and its global rate analysis Special cases of the perturbed PMM: Fundamental schemes The nonconvex setting The nonconvex nonlinear composite optimization-Preliminaries ALBUM-Adaptive Lagrangian-based multiplier method A methodology for global analysis of Lagrangian-based methods ALBUM in action: Global convergence of Lagrangian-based schemes A proximal multipliers method (PMM) A proximal alternating direction method of multipliers (PADMM) Acknowledgements References Generating structured nonsmooth priors and associated primal-dual methods Introduction Context Main contributions and organization of this chapter Nonsmooth priors Total Variation Total generalized variation Dualization Dualization of the variational regularization problems Numerical algorithms Bilevel optimization Background Bilevel optimization-A monolithic approach Numerical examples Discrete operators for (PTV) Bilevel TV numerical experiments Discrete operators for (PTGV) Bilevel TGV numerical experiments References Graph-based optimization approaches for machine learning, uncertainty quantification and networks Introduction Graph theory Recent methods for semisupervised and unsupervised data classification Semisupervised learning and the Ginzburg-Landau graph model The graph MBO scheme for data classification and image processing Heat kernel pagerank method Unsupervised learning and the Mumford-Shah model Imposing volume constraints Total variation methods for semisupervised and unsupervised data classification Uncertainty quantification within the graphical framework Networks Conclusion Acknowledgements References Survey of fast algorithms for Euler\'s elastica-based image segmentation Introduction Piecewise constant representation and interface problems to illusory contour with curvature term Euler\'s elastica-based segmentation models and fast algorithms Discussion References Recent advances in denoising of manifold-valued images Introduction Preliminaries on Riemannian manifolds General notation Convexity and Hadamard manifolds Intrinsic variational restoration models Minimization algorithms Subgradient descent Half-quadratic minimization Proximal point and Douglas-Rachford algorithm Proximal mapping Cyclic proximal point algorithm Douglas-Rachford algorithm for symmetric Hadamard spaces Numerical examples Conclusions References Image and surface registration Introduction Mathematical background Continuous and discrete images A mathematical framework for image registration Distance measures Volumetric differences Feature-based differences Regularization Regularization by ansatz-spaces, parametric registration Quadratic regularizer Diffusion regularizer Elastic regularizer Curvature regularizer Nonquadratic regularizer Mean curvature regularizer Gaussian curvature regularizer Fractional derivative based regularizer Hyperelastic regularizer Registration penalties and constraints Penalties for locally invertible maps Diffeomorphic registration Registration by inverse consistent approach Surface registration Brief introduction to surface geometry Parameterization-based approaches Laplace-Beltrami eigenmap approaches Metric approaches Functional map approaches Relationship between SR and IR Numerical methods Deep learning-based registration Conclusions References Metric registration of curves and surfaces using optimal control Introduction Building metrics via submersions Optimal control framework Chordal metrics on shapes Motivation General principle Oriented varifold distances Numerical aspects Intrinsic metrics Reparametrization-invariant metrics on parametrized shapes The metric on the space of unparametrized shapes The induced geodesic distance The geodesic equation An optimal control formulation of the geodesic problem on the space of unparametrized shapes Numerical aspects Outer deformation metric models A hybrid metric model Conclusion Acknowledgements References Efficient and accurate structure preserving schemes for complex nonlinear systems Introduction The SAV approach Suitable energy splitting Adaptive time stepping Several extensions of the SAV approach Problems with global constraints L1 minimization via hyper regularization Free energies with highly nonlinear terms Coupling with other physical conservation laws Dissipative/conservative systems which are not driven by free energy Conclusion Acknowledgements References Index A B C D E F G H I J K L M N O P Q R S T U V W Z