دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Zhe Wu. Panagiotis D. Christofides
سری: Advances in Industrial Control
ISBN (شابک) : 9783030711825, 9783030711832
ناشر: Springer
سال نشر: 2021
تعداد صفحات: [299]
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 10 Mb
در صورت تبدیل فایل کتاب Process Operational Safety and Cybersecurity. A Feedback Control Approach به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب ایمنی عملیاتی فرآیند و امنیت سایبری. یک رویکرد کنترل بازخورد نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
This book is focused on the development of rigorous, yet practical, methods for the design of advanced process control systems to improve process operational safety and cybersecurity for a wide range of nonlinear process systems. Process Operational Safety and Cybersecurity develops designs for novel model predictive control systems accounting for operational safety considerations, presents theoretical analysis on recursive feasibility and simultaneous closed-loop stability and safety, and discusses practical considerations including data-driven modeling of nonlinear processes, characterization of closed-loop stability regions and computational efficiency. The text then shifts focus to the design of integrated detection and model predictive control systems which improve process cybersecurity by efficiently detecting and mitigating the impact of intelligent cyber-attacks. The book explores several key areas relating to operational safety and cybersecurity including: machine-learning-based modeling of nonlinear dynamical systems for model predictive control; a framework for detection and resilient control of sensor cyber-attacks for nonlinear systems; insight into theoretical and practical issues associated with the design of control systems for process operational safety and cybersecurity; and a number of numerical simulations of chemical process examples and Aspen simulations of large-scale chemical process networks of industrial relevance. A basic knowledge of nonlinear system analysis, Lyapunov stability techniques, dynamic optimization, and machine-learning techniques will help readers to understand the methodologies proposed. The book is a valuable resource for academic researchers and graduate students pursuing research in this area as well as for process control engineers. Advances in Industrial Control reports and encourages the transfer of technology in control engineering. The rapid development of control technology has an impact on all areas of the control discipline. The series offers an opportunity for researchers to present an extended exposition of new work in all aspects of industrial control.
Preface Contents List of Figures List of Tables 1 Introduction 1.1 Motivation 1.2 Background 1.3 Operational Safety and Cybersecurity of Chemical Processes 1.3.1 Continuously Stirred Tank Reactor 1.3.2 Case Study: Process Operational Safety in EMPC 1.3.3 Case Study: Cybersecurity in Tracking MPC 1.4 Objectives and Organization of the Book 2 Background 2.1 Notation 2.2 Stability of Nonlinear Systems 2.2.1 Lyapunov's Direct Method 2.2.2 LaSalle's Invariance Principle 2.3 Control of Nonlinear Systems 2.3.1 Control Lyapunov Functions and Stabilization 2.3.2 Model Predictive Control 2.3.3 Lyapunov-Based MPC 2.3.4 Lyapunov-Based Economic MPC 3 Safeness Index-Based MPC and EMPC 3.1 Introduction 3.1.1 Class of Nonlinear Systems 3.2 Process Operational Safety 3.2.1 Safeness Index 3.2.2 Choosing Thresholds for Safeness Index 3.3 Safeness Index-Based MPC and EMPC 3.3.1 Stability, Safety, and Feasibility Analyses 3.4 Application to a Chemical Process Example 3.4.1 Process Description 3.4.2 Simulation Results 3.5 Conclusions 4 Operational Safety Via Control Lyapunov-Barrier Function-Based MPC 4.1 Introduction 4.1.1 Class of Nonlinear Systems 4.1.2 Characterization of Unsafe Regions 4.2 Control Barrier Function 4.3 Control Lyapunov-Barrier Function 4.3.1 Stabilization and Safety via Control Lyapunov-Barrier Function 4.3.2 Design of Constrained CLBF 4.4 CLBF-Based Model Predictive Control 4.4.1 Sample-and-Hold Implementation of CLBF-Based Controller 4.4.2 Formulation of CLBF-MPC 4.4.3 Application to a Chemical Process Example 4.5 CLBF-Based Economic Model Predictive Control 4.5.1 CLBF-Based EMPC Formulation 4.5.2 Application to a Chemical Process Example 4.6 Conclusions 5 Integration of Safety Systems with Control Systems 5.1 Introduction 5.2 Integration of Safety and Control Systems 5.2.1 Case Study: Thermal Runaway in a CSTR System 5.2.2 Case Study: High Pressure in a Flash Drum 5.3 Safeness Index-Based MPC 5.3.1 Case Study: Flash Drum 5.3.2 Case Study: Ammonia Process 5.3.3 Case Study: Ammonia Process Network 5.4 Conclusions 6 Machine Learning in Process Operational Safety 6.1 Introduction 6.1.1 Class of Nonlinear Systems 6.1.2 Stabilizability Assumption 6.2 Recurrent Neural Network Modeling 6.2.1 RNN Learning Algorithm 6.2.2 Development of RNN Model 6.2.3 Ensemble Regression Modeling 6.3 CLBF-MPC Using RNN Models 6.3.1 Stabilization and Safety via CLBF-Based Control 6.3.2 CLBF-based MPC Using an Ensemble of RNN Models 6.3.3 Parallel Computing and Ensemble of RNN Models 6.3.4 Online Learning of RNN Models 6.3.5 Computational Implementation Issues of RNN Models 6.3.6 Application to a Chemical Process Example 6.4 CLBF-EMPC Using RNN Models 6.4.1 Stability and Safety Under CLBF-EMPC 6.4.2 Application to a Chemical Process Example 6.5 Conclusions 7 Process Cybersecurity Via Machine Learning Detection 7.1 Introduction 7.1.1 Class of Nonlinear Systems 7.1.2 Lyapunov-Based MPC and EMPC 7.2 Intelligent Cyber-Attacks 7.2.1 Types of Intelligent Cyber-Attacks 7.3 Detection of Cyber-Attacks Targeting MPC Systems 7.3.1 Choice of Detection Input Variable 7.3.2 Sliding Detection Window 7.4 Cyber-Attack Resilient Control Systems 7.4.1 Redundant Sensors 7.4.2 Attack-Resilient Operation Combining Open-Loop and Closed-Loop Control 7.4.3 Post Cyber-Attack State Reconstruction 7.5 Application to a Chemical Process Example 7.6 Conclusions 8 A Two-Tier Control Architecture For Cybersecurity and Operational Safety 8.1 Introduction 8.1.1 Class of Nonlinear Systems 8.2 Cyber-Secure Two-Tier Control Architecture 8.2.1 Lower-Tier Control System 8.2.2 Upper-Tier Model Predictive Control System 8.3 Cyber-Attack Design and Detection 8.3.1 Attack Scenarios 8.3.2 Mitigation Measures via Reconfiguration of Control System 8.3.3 Integration of Safety Systems with Two-Tier Control Systems 8.4 Application to a Chemical Process Example 8.4.1 Cyber-Attacks and Detector Training 8.4.2 Cyber-Attack Detection Results 8.5 Conclusions Appendix References