ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Proceedings of the Sixth International Workshop on Machine Learning, Cornell University, Ithaca, New York, June 26-27, 1989

دانلود کتاب مجموعه مقالات ششمین کارگاه بین المللی یادگیری ماشین ، دانشگاه کرنل ، ایتاکا ، نیویورک ، 26 تا 27 ژوئن 1989

Proceedings of the Sixth International Workshop on Machine Learning, Cornell University, Ithaca, New York, June 26-27, 1989

مشخصات کتاب

Proceedings of the Sixth International Workshop on Machine Learning, Cornell University, Ithaca, New York, June 26-27, 1989

ویرایش:  
نویسندگان:   
سری:  
ISBN (شابک) : 9781558600362, 1558600361 
ناشر: Morgan Kaufmann, Elsevier Inc 
سال نشر: 1989 
تعداد صفحات: ix, 510 pages : ill ; 28 cm
[50 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 13 Mb 

قیمت کتاب (تومان) : 41,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 9


در صورت تبدیل فایل کتاب Proceedings of the Sixth International Workshop on Machine Learning, Cornell University, Ithaca, New York, June 26-27, 1989 به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب مجموعه مقالات ششمین کارگاه بین المللی یادگیری ماشین ، دانشگاه کرنل ، ایتاکا ، نیویورک ، 26 تا 27 ژوئن 1989 نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب مجموعه مقالات ششمین کارگاه بین المللی یادگیری ماشین ، دانشگاه کرنل ، ایتاکا ، نیویورک ، 26 تا 27 ژوئن 1989

مجموعه مقالات یادگیری ماشین 1989.


توضیحاتی درمورد کتاب به خارجی

Machine Learning Proceedings 1989.



فهرست مطالب

Content: 
Front Matter, Page i
Copyright, Page ii
PREFACE, Page ix
Unifying Themes in Empirical and Explanation-Based Learning, Pages 2-4, Pat Langley
INDUCTION OVER THE UNEXPLAINED: Integrated Learning of Concepts with Both Explainable and Conventional Aspects, Pages 5-7, Raymond Mooney, Dirk Ourston
CONCEPTUAL CLUSTERING OF EXPLANATIONS, Pages 8-10, Jungsoon P. Yoo, Douglas H. Fisher
A Tight Integration of Deductive and Inductive Learning*, Pages 11-13, GERHARD WIDMER
MULTI-STRATEGY LEARNING IN NONHOMOGENEOUS DOMAIN THEORIES, Pages 14-16, Gheorghe Tecuci, Yves Kodratoff
A DESCRIPTION OF PREFERENCE CRITERION IN CONSTRUCTIVE LEARNING: A Discussion of Basic Issues, Pages 17-19, Jianping Zhang, Ryszard S. Michalski
COMBINING CASE-BASED REASONING, EXPLANATION-BASED LEARNING, AND LEARNING FROM INSTRUCTION, Pages 20-22, Michael Redmond
DEDUCTION IN TOP-DOWN INDUCTIVE LEARNING, Pages 23-25, F. Bergadano, A. Giordana, S. Ponsero
ONE-SIDED ALGORITHMS FOR INTEGRATING EMPIRICAL AND EXPLANATION-BASED LEARNING, Pages 26-28, Wendy E. Sarrett, Michael J. Pazzani
COMBINING EMPIRICAL AND ANALYTICAL LEARNING WITH VERSION SPACES, Pages 29-33, Haym Hirsh
FINDING NEW RULES FOR INCOMPLETE THEORIES: EXPLICIT BIASES FOR INDUCTION WITH CONTEXTUAL INFORMATION, Pages 34-36, Andrea Pohoreckyj Danyluk
LEARNING FROM PLAUSIBLE EXPLANATIONS, Pages 37-39, Tom E. Fawcett
AUGMENTING DOMAIN THEORY FOR EXPLANATION-BASED GENERALISATION, Pages 40-42, Kamal M. Ali
Explanation Based Learning as Constrained Search, Pages 43-45, David Haines
REDUCING SEARCH AND LEARNING GOAL PREFERENCES, Pages 46-48, Steven Morris
Adaptation-Based Explanation: Explanations as Cases, Pages 49-51, Alex Kass
A RETRIEVAL MODEL USING FEATURE SELECTION, Pages 52-54, Colleen M. Seifert
IMPROVING DECISION-MAKING ON THE BASIS OF EXPERIENCE, Pages 55-57, Bruce Krulwich, Gregg Collins, Lawrence Birnbaum
EXPLANATION-BASED ACCELERATION OF SIMILARITY-BASED LEARNING, Pages 58-60, Masayuki Numao, Masamichi Shimura
Knowledge Acquisition Planning: Results and Prospects, Pages 61-65, Lawrence Hunter
“Learning by instruction” in connectionist systems, Pages 66-68, Joachim Diederich
INTEGRATING LEARNING IN A NEURAL NETWORK, Pages 69-71, Bruce F. Katz
Explanation-based learning with weak domain theories, Pages 72-74, Michael J. Pazzani
Using Domain Knowledge to Improve Inductive Learning Algorithms for Diagnosis, Pages 75-77, Gerhard Friedrich, Wolfgang Nejdl
A Framework for Improving Efficiency and Accuracy, Pages 78-80, James Wogulis
ERROR CORRECTION IN CONSTRUCTIVE INDUCTION, Pages 81-83, George Drastal, Regine Meunier, Stan Raatz
IMPROVING EXPLANATION-BASED INDEXING WITH EMPIRICAL LEARNING, Pages 84-86, Ralph Barletta, Randy Kerber
A SCHEMA FOR AN INTEGRATED LEARNING SYSTEM, Pages 87-89, Michael Wollowski
COMBINING EXPLANATION-BASED LEARNING AND ARTIFICIAL NEURAL NETWORKS, Pages 90-92, Jude W. Shavlik, Geoffrey G. Towell
LEARNING CLASSIFICATION RULES USING BAYES, Pages 94-98, Wray Buntine
NEW EMPIRICAL LEARNING MECHANISMS PERFORM SIGNIFICANTLY BETTER IN REAL LIFE DOMAINS, Pages 99-103, Matjaz Gams, Aram Karalic
INDUCTIVE LEARNING WITH BCT, Pages 104-108, Philip K. Chan
WHAT GOOD ARE EXPERIMENTS?, Pages 109-112, Ritchey A. Ruff, Thomas G. Dietterich
An Experimental Comparison of Human and Machine Learning Formalisms, Pages 113-118, Stephen Muggleton, Michael Bain, Jean Hayes-Michie, Donald Michie
TWO ALGORITHMS THAT LEARN DNF BY DISCOVERING RELEVANT FEATURES, Pages 119-123, Giulia Pagallo, David Haussler
LIMITATIONS ON INDUCTIVE LEARNING, Pages 124-128, Thomas G. Dietterich
THE INDUCTION OF PROBABILISTIC RULE SETS– THE ITRULE ALGORITHM, Pages 129-132, Rodney M. Goodman, Padhraic Smyth
EMPIRICAL SUBSTRUCTURE DISCOVERY, Pages 133-136, Lawrence B. Holder
LEARNING THE BEHAVIOR OF DYNAMICAL SYSTEMS FROM EXAMPLES, Pages 137-140, Jan Paredis
EXPERIMENTS IN ROBOT LEARNING, Pages 141-145, Matthew T. Mason, Alan D. Christiansen, Tom M. Mitchell
Induction of Decision Trees from Inconclusive Data, Pages 146-150, Scott Spangler, Usama M. Fayyad, Ramasamy Uthurusamy
KNOWLEDGE INTENSIVE INDUCTION, Pages 151-155, MICHEL MANAGO
AN OUNCE OF KNOWLEDGE IS WORTH A TON OF DATA: Quantitative Studies of the Trade-Off between Expertise and Data based on Statistically Well-Founded Empirical Induction, Pages 156-159, Brian R Gaines
SIGNAL DETECTION THEORY: VALUABLE TOOLS FOR EVALUATING INDUCTIVE LEARNING, Pages 160-163, Kent A. Spackman
UNKNOWN ATTRIBUTE VALUES IN INDUCTION, Pages 164-168, J.R. Quinlan
PROCESSING ISSUES IN COMPARISONS OF SYMBOLIC AND CONNECTIONIST LEARNING SYSTEMS, Pages 169-173, Douglas Fisher, Kathleen McKusick, Raymond Mooney, Jude W. Shavlik, Geoffrey Towell
BACON, DATA ANALYSIS AND ARTIFICIAL INTELLIGENCE, Pages 174-178, Cullen Schaffer
LEARNING TO PLAN IN COMPLEX DOMAINS, Pages 180-182, DAVID RUBY, DENNIS KIBLER
AN EMPIRICAL ANALYSIS OF EBL APPROACHES FOR LEARNING PLAN SCHEMATA, Pages 183-187, Jude W. Shavlik
LEARNING DECISION RULES FOR SCHEDULING PROBLEMS: A CLASSIFIER HYBRID APPROACH, Pages 188-190, M.R. Hilliard, G. Liepins, G. Rangarajan, M. Palmer
LEARNING TACTICAL PLANS FOR PILOT AIDING, Pages 191-193, Keith R. Levi, David Perschbacher, Valerie L. Shalin
ISSUES IN THE JUSTIFICATION-BASED DIAGNOSIS OF PLANNING FAILURES, Pages 194-196, Lawrence Birnbaum, Gregg Collins, Bruce Krulwich
LEARNING PROCEDURAL KNOWLEDGE IN THE EBG CONTEXT, Pages 197-199, Stan Matwin
LEARNING INVARIANTS FROM EXPLANATIONS, Pages 200-204, Jean-Francois PUGET
Using Learning to Recover Side-Effects of Operators in Robotics, Pages 205-208, Ralph P. Sobek, Jean-Paul Laumond
LEARNING TO RECOGNIZE PLANS INVOLVING AFFECT, Pages 209-211, Paul O'Rorke, Timothy Cain, Andrew Ortony
Learning to Retrieve Useful Information for Problem Solving, Pages 212-214, Randolph Jones
Discovering problem solving strategies: What humans do and machines don't (yet), Pages 215-217, Kurt VanLehn
Approximating Learned Search Control Knowledge, Pages 218-220, Melissa P. Chase, Monte Zweben, Richard L. Piazza, John D. Burger, Paul P. Maglio, Haym Hirsh
Planning in Games Using Approximately Learned Macros, Pages 221-223, Prasad Tadepalli
LEARNING APPROXIMATE PLANS FOR USE IN THE REAL WORLD, Pages 224-228, Scott W. Bennett
Using Concept Hierarchies to Organize Plan Knowledge, Pages 229-231, John A. Allen, Pat Langley
Conceptual Clustering of Mean-Ends Plans, Pages 232-234, Hua Yang, Douglas H. Fisher
LEARNING APPROPRIATE ABSTRACTIONS FOR PLANNING IN FORMATION PROBLEMS, Pages 235-239, Nicholas S. Flann
Discovering Admissible Search Heuristics by Abstracting and Optimizing, Page 240, Jack Mostow, Armand E. Prieditis
LEARNING HIERARCHIES OF ABSTRACTION SPACES, Pages 241-245, Craig A. Knoblock
LEARNING FROM OPPORTUNITY, Pages 246-248, Tim Converse, Kristian Hammond, Mitchell Marks
LEARNING BY ANALYZING FORTUITOUS OCCURRENCES, Pages 249-251, Steve A. Chien
EXPLANATION-BASED LEARNING OF REACTIVE OPERATORS, Pages 252-254, Melinda T. Gervasio, Gerald F. DeJong
ON BECOMING REACTIVE, Pages 255-257, Jim Blythe, Tom M. Mitchell
KNOWLEDGE BASE REFINEMENT AND THEORY REVISION, Pages 260-265, Allen Ginsberg
THEORY FORMATION BY ABDUCTION: INITIAL RESULTS OF A CASE STUDY BASED ON THE CHEMICAL REVOLUTION, Pages 266-271, Paul O'Rorke, Steven Morris, David Schulenburg
USING DOMAIN KNOWLEDGE TO AID SCIENTIFIC THEORY REVISION, Pages 272-277, DONALD ROSE
The Role of Experimentation in Scientific Theory Revision, Pages 278-283, Deepak Kulkarni, Herbert A. Simon
EXEMPLAR-BASED THEORY REJECTION: AN APPROACH TO THE EXPERIENCE CONSISTENCY PROBLEM, Pages 284-289, Shankar A. Rajamoney
CONTROLLING SEARCH FOR THE CONSEQUENCES OF NEW INFORMATION DURING KNOWLEDGE INTEGRATION, Pages 290-295, Kenneth S. Murray, Bruce W. Porter
IDENTIFYING KNOWLEDGE BASE DEFICIENCIES BY OBSERVING USER BEHAVIOR, Pages 296-301, Keith R. Levi, Valerie L. Shalin, David L. Perschbacher
Toward automated rational reconstruction: A case study, Pages 302-307, Chris Tong, Phil Franklin
DISCOVERING MATHEMATICAL OPERATOR DEFINITIONS, Pages 308-313, Michael H. Sims, John L. Bresina
IMPRECISE CONCEPT LEARNING WITHIN A GROWING LANGUAGE, Pages 314-319, Zbigniew W. Ras, Maria Zemankova
USING DETERMINATIONS IN EBL: A SOLUTION TO THE INCOMPLETE THEORY PROBLEM, Pages 320-325, Sridhar Mahadevan
Some results on the complexity of knowledge-base refinement, Pages 326-331, Marco Valtorta
KNOWLEDGE BASE REFINEMENT AS IMPROVING AN INCORRECT, INCONSISTENT AND INCOMPLETE DOMAIN THEORY, Pages 332-337, David C. Wilkins, Kok-Wah Tan
INCREMENTAL LEARNING OF CONTROL STRATEGIES WITH GENETIC ALGORITHMS, Pages 340-344, John J. Grefenstette
TOWER OF HANOI WITH CONNECTIONIST NETWORKS: LEARNING NEW FEATURES, Pages 345-349, Charles W. Anderson
A Formal Framework for Learning in Embedded Systems, Pages 350-353, Leslie Pack Kaelbling
A Role for Anticipation in Reactive Systems that Learn, Pages 354-357, Steven D. Whitehead, Dana H. Ballard
UNCERTAINTY BASED SELECTION OF LEARNING EXPERIENCES, Pages 358-361, Paul D. Scott, Shaul Markovitch
IMPROVED TRAINING VIA INCREMENTAL LEARNING, Pages 362-365, Paul E. Utgoff
INCREMENTAL BATCH LEARNING, Pages 366-370, Scott H. Clearwater, Tze-Pin Cheng, Haym Hirsh, Bruce G. Buchanan
INCREMENTAL CONCEPT FORMATION WITH COMPOSITE OBJECTS, Pages 371-374, Kevin Thompson, Pat Langley
USING MULTIPLE REPRESENTATIONS TO IMPROVE INDUCTIVE BIAS: GRAY AND BINARY CODING FOR GENETIC ALGORITHMS, Pages 375-378, Richard A. Caruana, J. David Schaffer, Larry J. Eshelman
FOCUSED CONCEPT FORMATION, Pages 379-382, John H. Gennari
An Exploration into Incremental Learning : the INFLUENCE system, Pages 383-386, Antoine CORNUEJOLS
INCREMENTAL, INSTANCE-BASED LEARNING OF INDEPENDENT AND GRADED CONCEPT DESCRIPTIONS, Pages 387-391, David W. Aha
Cost-Sensitive Concept Learning of Sensor Use in Approach and Recognition, Pages 392-395, MING TAN, JEFFREY C. SCHLIMMER
REDUCING REDUNDANT LEARNING, Pages 396-399, Joel D. Martin
INCREMENTAL CLUSTERING BY MINIMIZING REPRESENTATION LENGTH, Pages 400-403, JAKUB SEGEN
INFORMATION FILTERS AND THEIR IMPLEMENTATION IN THE SYLLOG SYSTEM, Pages 404-407, Shaul Markovitch, Paul D. Scott
ADAPTIVE LEARNING OF DECISION-THEORETIC SEARCH CONTROL KNOWLEDGE, Pages 408-411, Eric H. Wefald, Stuart J. Russell
ADAPTIVE STRATEGIES OF LEARNING A STUDY OF TWO-PERSON ZERO-SUM COMPETITION, Pages 412-415, Oliver G. Selfridge
AN INCREMENTAL GENETIC ALGORITHM FOR REAL-TIME LEARNING, Pages 416-419, Terence C. Fogarty
PARTICIPATORY LEARNING: A CONSTRUCTIVIST MODEL, Pages 420-423, Ronald R. Yager, Kenneth M. Ford
REPRESENTATIONAL ISSUES IN MACHINE LEARNING, Pages 426-429, Devika Subramanian
Labor Saving New Distinctions, Pages 430-433, John Woodfll
A THEORY OF JUSTIFIED REFORMULATIONS, Pages 434-438, Devika Subramanian
REFORMULATION FROM STATE SPACE TO REDUCTION SPACE, Pages 439-440, Patricia J. Riddle
KNOWLEDGE-BASED FEATURE GENERATION, Pages 441-443, James P. Callan
ENRICHING VOCABULARIES BY GENERALIZING EXPLANATION STRUCTURES, Pages 444-446, Richard Maclin, Jude W. Shavlik
Higher-Order and Modal Logic as a Framework for Explanation-Based Generalization, Pages 447-449, Scott Dietzen, Frank Pfenning
Towards A Formal Analysis of EBL, Pages 450-453, Russell Greiner
A MATHEMATICAL FRAMEWORK FOR STUDYING REPRESENTATION, Pages 454-456, Robert C. Holte, Robert M. Zimmer
Refining Representations to Improve Problem Solving Quality, Pages 457-460, JEFFREY C. SCTILIMMER
COMPARING SYSTEMS AND ANALYZING FUNCTIONS TO IMPROVE CONSTRUCTIVE INDUCTION, Pages 461-464, Larry Rendell
EVALUATING ALTERNATIVE INSTANCE REPRESENTATIONS, Pages 465-468, Sharad Saxena
EVALUATING BIAS DURING PAC-LEARNING, Pages 469-471, Lonnie Chrisman
CONSTRUCTING REPRESENTATIONS USING INVERTED SPACES, Pages 472-473, Pankaj Mehra
A CONSTRUCTIVE INDUCTION FRAMEWORK, Pages 474-475, Christopher J. Matheus
CONSTRUCTIVE INDUCTION BY ANALOGY, Pages 476-477, Luc De Raedt, Maurice Bruynooghe
CONCEPT DISCOVERY THROUGH UTILIZATION OF INVARIANCE EMBEDDED IN THE DESCRIPTION LANGUAGE, Pages 478-479, Mieczyslaw M. Kokar
DECLARATIVE BIAS FOR STRUCTURAL DOMAINS, Pages 480-482, Benjamin N. Grosof, Stuart J. Russell
Automatic Construction of a Hierarchical Generate-and-Test Algorithm, Pages 483-484, Sunil Mohan, Chris Tong
A Knowledge-level Analysis of Informing, Pages 485-488, Jane Yung-jen Hsu
AN OBJECT-ORIENTED REPRESENTATION FOR SEARCH ALGORITHMS, Pages 489-491, Jack Mostow
COMPILING LEARNING VOCABULARY FROM A PERFORMANCE SYSTEM DESCRIPTION, Pages 492-495, Richard M. Keller
GENERALIZED RECURSIVE SPLITTING ALGORITHMS FOR LEARNING HYBRID CONCEPTS, Pages 496-498, Bruce Lambert, David Tcheng, Stephen C-Y Lu
SCREENING HYPOTHESES WITH EXPLICIT BIAS, Pages 499-500, Diana Gordon
BUILDING A LEARNING BIAS FROM PERCEIVED DEPENDENCIES, Pages 501-502, Ch. de Sainte Marie
A BOOTSTRAPPING APPROACH TO CONCEPTUAL CLUSTERING, Pages 503-504, Katharina Morik, Joerg-Uwe Kietz
OVERCOMING FEATURE SPACE BIAS IN A REACTIVE ENVIRONMENT, Pages 505-507, Hans Tallis
AUTHOR INDEX, Pages 509-510




نظرات کاربران