دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 1 نویسندگان: L. Ashok Kumar (editor), L. S. Jayashree (editor), R. Manimegalai (editor) سری: ISBN (شابک) : 3030240509, 9783030240509 ناشر: Springer Nature سال نشر: 2019 تعداد صفحات: 943 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 31 مگابایت
در صورت تبدیل فایل کتاب Proceedings of International Conference on Artificial Intelligence, Smart Grid and Smart City Applications: AISGSC 2019 به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب مجموعه مقالات کنفرانس بین المللی هوش مصنوعی ، شبکه هوشمند و برنامه های شهر هوشمند: AISGSC 2019 نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
با توجه به پیچیدگی و ناهمگونی شبکه هوشمند و حجم بالای
اطلاعات مورد پردازش، به نظر میرسد تکنیکهای هوش مصنوعی و
هوش محاسباتی برخی از فناوریهای توانمند برای توسعه و موفقیت
آتی آن باشند. موضوع کتاب «مسیری برای شبکه آینده» با تأکید
بر روندهای شبکه هوشمند، مسائل مربوط به اتصالات تجدیدپذیر،
برنامه ریزی-عملیات-کنترل و قابلیت اطمینان شبکه، نظارت و
حفاظت در زمان واقعی، بازار، تولید پراکنده و برق است. مسائل
توزیع، برنامه های کاربردی الکترونیک قدرت، کامپیوتر-IT و
برنامه های پردازش سیگنال، دستگاه های قدرت، آموزش مهندسی
قدرت و همکاری صنعت و موسسه. هدف اصلی این کتاب بررسی وضعیت
فعلی هنر مرتبطترین تکنیکهای هوش مصنوعی است که برای مسائل
مختلفی که در توسعه شبکه هوشمند به وجود میآیند، اعمال
میشود.
Due to the complexity, and heterogeneity of the smart grid
and the high volume of information to be processed,
artificial intelligence techniques and computational
intelligence appear to be some of the enabling technologies
for its future development and success. The theme of the
book is Making pathway for the grid of future with the
emphasis on trends in Smart Grid, renewable interconnection
issues, planning-operation-control and reliability of grid,
real time monitoring and protection, market, distributed
generation and power distribution issues, power electronics
applications, computer-IT and signal processing
applications, power apparatus, power engineering education
and industry-institute collaboration. The primary objective
of the book is to review the current state of the art of
the most relevant artificial intelligence techniques
applied to the different issues that arise in the smart
grid development.
Preface Contents Abbreviations Chapter 1: Fractional-Order PID Controller Optimized by SCA for Solar System 1.1 Introduction 1.2 Literature Survey 1.3 Proposed PV System 1.3.1 PV Module 1.3.2 FOPID (PIλ Dμ) Controller 1.4 Sine Cosine Algorithm (SCA) 1.5 Results and Discussion 1.6 Conclusion References Chapter 2: LVRT Capability Improvement in a Grid-Connected DFIG Wind Turbine System Using Neural Network-Based Dynamic Voltage... 2.1 Introduction 2.2 Wind Turbine System 2.3 Low-Voltage Ride Through (LVRT) 2.4 Dynamic Voltage Restorer (DVR) 2.5 Control Strategy of DVR 2.5.1 Control Based on PI Controller 2.5.2 Control Based on ANN Controller 2.6 Simulation Results and Discussions 2.7 Conclusion References Chapter 3: Detection and Classification of Power Quality Events Using Wavelet Energy Difference and Support Vector Machine 3.1 Introduction 3.2 Principal Component Analysis 3.2.1 Steps to Reduce the Dimension of the Matrix with PCA 3.3 Support Vector Machine 3.4 Hilbert-Huang Transform 3.5 Power Quality Analysis Using SVM 3.5.1 Mathematical Models of PQE 3.5.2 Multi-resolution Analysis (MRA) 3.5.3 Energy Difference of MRA of PQE 3.5.4 Optimization of Parameters and Classification of Testing Set 3.6 Conclusion References Chapter 4: PMSM Drive Using Predictive Current Control Technique for HVAC Applications 4.1 Introduction 4.2 Proposed Predictive Current Control 4.3 Results and Discussions 4.4 Comparison of Predictive Current Control with Classical Control Techniques 4.5 Conclusion References Chapter 5: Grid-Connected 5 kW Mono-crystalline Solar PV System 5.1 Introduction 5.2 Solar PV System Elements 5.2.1 Solar PV Module 5.2.2 Module Mounting Structures 5.2.3 DC Combiner Box (Junction Box) 5.2.4 DC Distribution Box (DC DB) 5.2.5 Power Conditioning Unit (Inverter) 5.2.6 AC Distribution Box 5.2.7 Cables 5.2.8 Protection: Earthing, Lightning and Grid Islanding 5.3 Sizing of Solar PV System 5.3.1 Solar Array Capacity 5.3.2 Inverter Sizing 5.4 Solar PV-Grid Interfacing 5.5 Results and Discussion 5.6 Conclusion References Chapter 6: An Add-in Tool for BIM-Based Electrical Load Forecast for Multi-building Microgrid Design 6.1 Introduction 6.2 Literature Review 6.3 Methodology 6.4 Case Study and Inferences 6.5 Conclusion References Chapter 7: An Investigation on Torque Ripple Minimization of Switched Reluctance Motor Using Different Power Converter Topolog... 7.1 Introduction 7.2 SRM Drive Modelling 7.2.1 Configuration 7.2.2 Torque Production Mechanism 7.3 Modelling of SRM Drive with Various Power Converters 7.3.1 Asymmetric Power Converter 7.3.2 R-Dump Power Converter 7.3.3 C-Dump Power Converter 7.3.4 Fuzzy Logic Controller 7.4 Results and Discussions 7.5 Conclusion References Chapter 8: Design of Half-Ring MIMO Antenna to Reduce the Mutual Coupling 8.1 Introduction 8.2 Antenna Construction and Its Geometry 8.3 Results Analysis and Discussion 8.4 Conclusion References Chapter 9: Optimal Allocation of Distributed Generation Using Clustered Firefly Algorithm 9.1 Introduction 9.2 Problem Formulation 9.2.1 The Objective Function 9.2.2 Voltage Limits 9.2.3 Current Limits 9.3 Application of CFFA for Power Loss Minimization 9.4 Simulation Results and Discussion 9.5 Performance Comparison 9.6 Conclusion References Chapter 10: CDM-Based Two-Degree-of-Freedom PID Controller Tuning Rules for Unstable FOPTD Processes 10.1 Introduction 10.2 Coefficient Diagram Method 10.3 Proposed CDM-PID Tuning Rules 10.4 Simulation Results 10.4.1 Set Point Tracking and Disturbance Rejection 10.4.2 Robustness Test 10.4.3 Stability Analysis 10.5 Conclusion References Chapter 11: Real-Time Energy Management System for Solar-Wind-Battery fed Base Transceiver Station 11.1 Introduction 11.2 Block Diagram and System Description 11.2.1 Flow Diagram of the Control Logic 11.3 Backup Facilities 11.3.1 Battery Specifications 11.3.2 SOC Estimation of Battery 11.3.3 Performance of SOC Estimator 11.3.4 Performance of Controller 11.4 Hardware Description 11.5 Conclusions References Chapter 12: IOT-Based Adaptive Protection of Microgrid 12.1 Introduction 12.2 Proposed IOT-Based Microgrid Protection System 12.2.1 Methodology 12.2.2 Modules 12.3 Design Approach 12.4 Results and Discussion 12.5 Conclusion References Chapter 13: Performance Comparison Between Sensor and Sensorless Control of Permanent Magnet Synchronous Motor with Wide Speed... 13.1 Introduction 13.2 MRAS Using MTPA and Flux Weakening Operations 13.3 Results and Discussion 13.3.1 MTPA with Variable Speed and Variable Load 13.3.2 Flux Weakening with Variable Speed and Variable Load 13.4 Conclusion References Chapter 14: Passive Fault-Tolerant Control Based on Interval Type-2 Fuzzy Controller for Coupled Tank System 14.1 Introduction 14.2 Model Description of the Coupled-Tank System 14.2.1 Coupled-Tank-Level Control System 14.2.2 CTLCS Mathematical Modelling 14.3 PFTIT2FLC design and Background of Type-2 FLC 14.3.1 Background of the Type-2 Fuzzy Logic Control 14.3.1.1 Fuzzifier 14.3.1.2 Type Reducer 14.3.1.3 Deffuzzifier 14.3.2 PFTIT2FLC Design for Coupled-Tank-Level Control System 14.4 Simulation Results 14.4.1 Tracking Response with System Component Faults 14.5 Conclusion References Chapter 15: Enhanced Isolated Boost DC-DC Converter with Reduced Number of Switches 15.1 Introduction 15.1.1 A Subsection Sample 15.2 Operating Principle 15.2.1 Operating Intervals of Proposed Converter 15.2.2 Voltage Gain 15.3 Simulation Results 15.4 Conclusions References Chapter 16: Harmonic Intensity Reduction Technique for Three Phase VSI Drive through Double Randomness 16.1 Introduction 16.2 Study of Harmonic Distribution in SPWM VSI Drive 16.3 Proposed HIRDRPWM 16.4 Simulation Study 16.5 Conclusion References Chapter 17: PV-Based Multilevel Inverter-Fed Three-Phase Induction Motor with Improved Time and Speed of Response 17.1 Introduction 17.1.1 Specification of the Systems 17.1.2 Sizing of the Photovoltaic Panel 17.2 Buck-Boost Converter 17.3 Cascaded Multilevel Inverter 17.3.1 Feedback Circuit 17.4 Response of PI Controller 17.4.1 PI Controller 17.5 Proposed System with FOPID Controller and Time Response 17.5.1 FOPID Controller 17.6 Harmonic Reduction 17.6.1 Comparison of Harmonics Parameter 17.7 Simulation Results 17.7.1 Closed Loop with PI Controller 17.7.2 Closed Loop with FOPID Controller 17.8 Comparison of Output Parameters 17.9 Conclusion References Chapter 18: Adaptive Disturbance Observers for Building Thermal Model 18.1 Introduction 18.2 Preliminaries 18.2.1 Notation and Definitions 18.2.2 Thermal Dynamics of the Air Conditioner 18.2.3 Problem Definition 18.3 Adaptive Disturbance Estimator 18.3.1 Conditions for Observability of Disturbance Estimator 18.4 Results 18.5 Conclusions References Chapter 19: HTSA Optimized PID-Based MPPT for Solar PV System 19.1 Introduction 19.2 System Investigation 19.2.1 Boost Converter 19.3 Controllers 19.3.1 PID Controller 19.4 Maximum Power Point Tracking (MPPT) 19.5 Heat Transfer Search Algorithm (HTSA) 19.6 Result and Discussion 19.7 Conclusion References Chapter 20: Performance Analysis of UFMC System with Different Prototype Filters for 5G Communication 20.1 Introduction 20.2 Literature Survey 20.3 Proposed UFMC System with Prototype Filter 20.3.1 Prototype Filter 20.3.2 UFMC System Model 20.4 Results and Discussion 20.4.1 Parameters for Simulation 20.4.2 Performance Analysis of the Hermite Filter 20.4.2.1 PSD Evaluation 20.4.2.2 BLER Analysis 20.4.2.3 BER Analysis 20.4.2.4 PAPR Analysis 20.4.3 Performance Analysis of PHYDYAS Filter 20.4.3.1 PSD Evaluation 20.4.3.2 BLER Analysis 20.4.3.3 BER Analysis 20.4.3.4 PAPR Analysis 20.4.4 Performance Analysis of Root-Raised-Cosine (RRC) Filter 20.4.4.1 PSD Evaluation 20.4.4.2 BLER Analysis 20.4.4.3 BER Analysis 20.4.4.4 PAPR Analysis 20.4.5 Performance Analysis of Rectangular Filter 20.4.5.1 PSD Evaluation 20.4.5.2 BLER Analysis 20.4.5.3 BER Analysis 20.4.5.4 PAPR Analysis 20.5 Conclusion References Chapter 21: Fully Convolved Neural Network-Based Retinal Vessel Segmentation with Entropy Loss Function 21.1 Introduction 21.2 Proposed Method 21.2.1 Overview 21.2.2 Green Channel Extraction 21.2.3 Local Normalization 21.2.4 Contrast Limited Adaptive Histogram Equalization 21.2.5 Convolutional Neural Network 21.2.6 Cross-Entropy Loss Function 21.3 Experiment Evaluation 21.3.1 Dataset 21.3.2 Evaluation Metric 21.4 Result and Conclusion 21.4.1 Result 21.5 Conclusion References Chapter 22: Solar Power Forecasting Using Adaptive Curve-Fitting Algorithm 22.1 Introduction 22.2 Proposed Algorithm: Adaptive Curve Fitting (ACF) 22.3 Result 22.4 Conclusions References Chapter 23: A Review of Electric Vehicle Technologies 23.1 Introduction 23.2 Classification of Vehicles 23.2.1 Internal Combustion Engine Vehicles (ICEVs) 23.2.2 Hybrid Electric Vehicles (HEV) 23.2.3 All-Electric Vehicles 23.3 Electric Propulsion System 23.4 Energy Storage System 23.4.1 Battery 23.4.2 Ultracapacitor 23.4.3 Flywheel 23.5 Energy Management 23.6 Conclusion References Chapter 24: Gabor Filter-Based Tonsillitis Analysis Using VHDL 24.1 Introduction 24.2 Related Work 24.2.1 Region-Based Segmentation 24.2.2 Threshold-Based Segmentation 24.2.3 Cluster-Based Segmentation 24.2.4 Filter-Based Segmentation 24.3 Proposed Image Segmentation Using Gabor Filter and CORDIC Algorithm 24.4 Simulated Results and Discussions 24.4.1 Results Obtained in MATLAB 24.4.2 Results Obtained Using VHDL 24.5 Conclusion References Chapter 25: Incorporation of Modified Second-Order Adaptive Filter in MFGCI for Harmonic Mitigation of Microgrid 25.1 Introduction 25.2 SSS Configured MFGCI 25.3 Modified Second-Order Adaptive Filter 25.4 Simulation Results 25.5 Conclusion References Chapter 26: Optimal DAU Placement for Smart Distribution Grid Communication Network 26.1 Introduction 26.2 Clustering Smart Devices 26.3 System Model 26.4 Improved K-Means Algorithm 26.5 Conclusion References Chapter 27: Long-Term Forecasting of Hybrid Renewable Energy Potential Using Weibull Distribution Method in Coimbatore 27.1 Introduction 27.2 Renewable Energy Potential of Coimbatore 27.2.1 Scenario of Coimbatore 27.2.2 Characteristics of Wind 27.2.3 Characteristics of Solar Energy 27.3 Weibull Distribution Method 27.3.1 Energy Pattern Factor Method 27.3.2 Description of Data Set 27.4 Result and Discussions 27.4.1 Wind Speed Prediction 27.4.2 Prediction of Solar Irradiance 27.5 Conclusion References Chapter 28: Efficient and Improved ANN-Based Voltage-Rise Mitigation Strategy in Distribution Network with Distributed Solar P... 28.1 Introduction 28.2 System Model 28.3 Proposed Control Algorithm 28.4 Simulation Results 28.5 Conclusions References Chapter 29: Control of Buck Converter by Fuzzy Controller for Wind Energy: Battery System 29.1 Introduction 29.2 Overview of the Proposed System 29.3 Buck Converter 29.4 Fuzzy Logic Controller (FLC) 29.5 Simulation Block Diagram 29.6 Simulation Results 29.7 Conclusion References Chapter 30: A Survey on Secure Beamforming in MIMO-NOMA-Based Cognitive Radio Network 30.1 Introduction 30.2 Study of Securing MIMO NOMA in 5G Technology 30.2.1 Defence for MIMO-NOMA-Based CRN 30.2.2 A General Power Allocation Scheme for NOMA 30.2.3 Enhancement of NOMA´s Physical Layer Security in Large-Scale Networks 30.2.4 Secrecy Capability Maximization 30.2.5 Physical Layer Security of Cooperative NOMA Systems 30.2.6 Secure Beamforming in MIMO-NOMA 30.3 Future Guidance to Secure NOMA 30.4 Conclusion References Chapter 31: Hybrid Optimization of Cuckoo Search and Differential Evolution Algorithm for Privacy-Preserving Data Mining 31.1 Introduction 31.2 Related Work 31.3 Methodology 31.3.1 The Adult Dataset 31.3.2 k-anonymity 31.3.3 Cuckoo Search (CS) 31.3.4 Differential Evolution 31.4 Results and Discussion 31.5 Conclusion References Chapter 32: Using Sliding Window Algorithm for Rainfall Forecasting 32.1 Introduction 32.2 Proposed Work 32.2.1 Methodology 32.2.2 Sliding Window 32.2.3 Statistical Measures 32.2.3.1 Mean 32.2.3.2 Variation 32.2.3.3 Jaccard distance 32.2.3.4 Root-Mean-Square Error 32.2.4 Sliding Window Algorithm 32.2.5 Dataset Description 32.3 Results and Discussion 32.4 Conclusion References Chapter 33: Air Pollution-Level Estimation in Smart Cities Using Machine Learning Algorithms 33.1 Introduction 33.2 Literature Survey 33.3 Proposed Model 33.3.1 Classification of Air Quality Level 33.3.1.1 K-Nearest Neighbours 33.3.1.2 Random Decision Forest 33.3.1.3 Support Vector Machine 33.4 Experimental Analysis 33.4.1 Study Area 33.4.2 Performance Metrics 33.5 Conclusion References Chapter 34: Implicit Continuous User Authentication Using Swipe Actions on Mobile Touch Screen with ANN Classifier 34.1 Introduction 34.2 Related Works 34.3 Materials and Methods 34.4 Feature Explanation 34.4.1 x value, y value, and z value 34.4.2 Size 34.4.3 Raw x, raw y 34.4.4 Touch Major, Touch Minor 34.4.5 x, y 34.4.6 x velocity, y velocity, and Distance 34.5 Results and Discussion 34.6 Conclusion References Chapter 35: A Review on Graph Analytics-Based Approaches in Protein-Protein Interaction Network 35.1 Introduction 35.2 Essential Protein Identification 35.3 Computational Methods 35.3.1 Degree Centrality 35.3.2 Betweenness Centrality 35.3.3 Closeness Centrality 35.3.4 Eigen Vector Centrality 35.3.5 Modularity and Community Structure in Networks 35.3.6 Centrality and Modularity 35.4 Protocol 35.5 Conclusion References Chapter 36: A Survey on Emotion Detection Using EEG Signals 36.1 Introduction 36.2 Related Work 36.3 Comparison Study 36.3.1 Comparison of Physiological Signals to Detect Emotions 36.3.2 Comparison of Methods to Extract Emotions from EEG 36.4 Conclusion References Chapter 37: A Smart Agricultural Model Using IoT, Mobile, and Cloud-Based Predictive Data Analytics 37.1 Introduction 37.2 Literature Review 37.3 Proposed Methodology 37.4 Conclusion References Chapter 38: Machine Translation Using Deep Learning: A Comparison 38.1 Introduction 38.2 Various Approaches for Machine Translation 38.2.1 Rule-Based Machine Translation 38.2.1.1 Direct Machine Translation 38.2.1.2 Interlingual Machine Translation 38.2.1.3 Transfer-Based Machine Translation 38.2.2 Corpus-Based Machine Translation 38.2.2.1 Statistical Machine Translation 38.2.2.2 Example-Based Machine Translation 38.2.3 Neural Machine Translation 38.3 Comparison Among the Different Machine Translation Techniques 38.4 Evaluation Metrics 38.4.1 Bleu Score 38.4.2 NIST Score 38.4.3 Translation Error Rate 38.5 Conclusion References Chapter 39: Societal Impact of Framework for Energy-Efficient Clustering Algorithms in Mobile Wireless Sensor Networks 39.1 Introduction 39.2 Challenges in Real-Time MWSN Applications 39.2.1 Localization 39.2.2 Network Coverage 39.2.3 Dynamic Network Topology 39.2.4 Energy Consumption 39.2.5 Mobility of Sensor Nodes and Sink 39.3 FEECA: Framework for Energy-Efficient Clustering Algorithms in MWSN 39.4 Services Offered by FEECA 39.4.1 Single Area-Based Services 39.4.2 Grid Area-Based Services 39.4.3 High Density Area-Based Services 39.5 Societal Impact of FEECA 39.5.1 Single Area-Based Applications Served by FEECA 39.5.1.1 Health Monitoring 39.5.1.2 Vehicle Monitoring 39.5.1.3 Animal Monitoring 39.5.1.4 Machine Monitoring 39.5.2 Grid Area-Based Applications Served by FEECA 39.5.2.1 Environmental Monitoring 39.5.2.2 Patient Monitoring 39.5.2.3 Disaster Monitoring 39.5.2.4 Structural Monitoring 39.5.3 High Density Area-Based Applications Served by FEECA 39.5.3.1 Traffic Monitoring 39.5.3.2 Accident Monitoring 39.5.3.3 Undersea Monitoring 39.5.3.4 Forest Monitoring 39.6 Conclusion and Future Work References Chapter 40: Energy Demand Prediction Using Linear Regression 40.1 Introduction 40.2 Literature Survey 40.3 Sources of Energy Big Data 40.4 Visualization Process 40.5 Linear Regression Predictive Modeling 40.6 Results 40.7 Conclusion and Future Works References Chapter 41: Risk Prediction Analysis of Cardiovascular Disease Using Supervised Machine Learning Techniques 41.1 Introduction 41.2 Literature Survey 41.3 Proposed System 41.3.1 Dataset 41.3.2 Preprocessing 41.3.3 Classification 41.3.4 EDC-AIRS 41.3.5 Decision Tree (DT) 41.3.6 Support Vector Machine (SVM) 41.4 Experimental Results 41.5 Conclusion References Chapter 42: Safest Secure and Consistent Data Services in the Storage of Cloud Computing 42.1 Introduction 42.2 Related Works 42.2.1 Problem and System Model Definitions 42.3 Overview 42.3.1 Design Objective 42.3.2 Preliminaries and Notations (Table 42.1) 42.4 Extension to Data Storage Security 42.5 Experimental Results 42.6 Conclusion References Chapter 43: Agile Supply Chain Management Enabled by the Internet of Things and Microservices 43.1 Introduction 43.2 Background 43.3 Empowering Supply Chains with IoT 43.4 Agile Development with Microservices 43.5 Microservices for IoT Applications 43.6 Connecting the Dots: IoT-Enabled Supply Chain Solutions with Microservices 43.7 Conclusion and Future Work References Chapter 44: Production and Characterization of Bio-Fertilizers from Tree Leaves Utilizing an Automated Hot Composting Chamber ... 44.1 Introduction 44.2 Materials and Methods 44.2.1 Sampling 44.2.2 Design of Composting Chamber 44.2.3 Physicochemical Parameters of Composting Materials 44.3 Results and Discussion 44.3.1 Moisture Content 44.3.2 Influence of Temperature 44.3.3 Electrical Conductivity 44.3.4 pH Measurements 44.4 Conclusions References Chapter 45: Spectrum Sensing Based on Cascaded Approach for Cognitive Radios 45.1 Introduction 45.2 Related Work 45.3 Detection Method 45.3.1 Energy Detection 45.3.2 Cyclic Prefix Autocorrelation Detection 45.3.3 Fusion Scheme 45.4 Hardware and Simulation Results 45.4.1 Energy Detection Technique 45.4.2 Autocorrelation-Based Detection Technique 45.4.3 Performance of Energy Detection Technique and Autocorrelation Detection Technique 45.4.4 Cascaded Approach 45.5 Conclusion References Chapter 46: Remote Process Monitoring and Control Through IIoT 46.1 Introduction 46.2 Internet of Things 46.2.1 Conventional Closed-Loop Control 46.2.2 Closed-Loop Control Through IIoT 46.2.2.1 Process: Nonlinear CSTR 46.2.2.2 Controller: CC3200 46.2.2.3 Software Requirements: Energia, ThingSpeak Cloud, and MQTT 46.2.2.4 Implementation of IoT-Based Closed-Loop Control 46.3 Benefits in IoT-Based Control 46.4 IoT for Process Data Analytics 46.5 Conclusion References Chapter 47: Case-Based Reasoning (CBR)-Based Smart Indoor Navigation 47.1 Motivation 47.2 Context of the Work 47.3 Related Work 47.3.1 Existing Work in the Area of Smart City 47.3.2 Existing Work in the Area of Smart Indoor Navigation 47.3.3 Existing Work in the Area of Case-Based Reasoning 47.4 Lessons Learned 47.5 Objective 47.6 Case-Based Reasoning 47.7 Synergy Between CBR and Smart Navigation System 47.7.1 Representation of Cases in Case-Based Reasoning 47.8 Conceptual Architecture 47.9 Observations 47.10 Sample Testing 47.11 Discussion and Conclusion Appendix References Chapter 48: A Survey on Medical Image Registration Using Deep Learning Techniques 48.1 Introduction 48.2 General Workflow of Image Registration (Fig. 48.1) 48.2.1 Classification of Image Registration (Fig. 48.2) 48.3 Overview of Convolutional Neural Networks 48.4 Literature Survey 48.5 Conclusion References Chapter 49: Agent-Based Temperature Monitoring System 49.1 Introduction 49.2 Multi-agent Systems 49.3 Characteristics of MAS 49.3.1 Robust 49.3.2 Accuracy 49.3.3 Mobility 49.4 Identification of Tool Support 49.4.1 JADE 49.5 Need for an Agent-Based Model 49.5.1 Monitoring Agent 49.5.2 Actuating Agent 49.5.3 Controller Agent 49.5.4 Network Layer 49.6 Agent-Based Temperature Monitoring System 49.6.1 Agent Creation Using JADE Framework 49.7 Conclusion 49.8 Future Work References Chapter 50: Classification of Phonemes Using EEG 50.1 Introduction 50.2 Previous Work 50.3 Dataset 50.4 Methodology 50.4.1 Pre-processing 50.4.2 Feature Extraction 50.4.3 Feature and Channel Selection 50.4.4 Classification 50.5 Experimental Results 50.6 Conclusion References Chapter 51: Attribute Table-Based Multipath Routing Protocol to Improve Network Lifetime in Multi-hop WSN 51.1 Introduction 51.2 Related Works 51.3 Attribute Table-Based Energy-Efficient QoS Multipath Routing 51.3.1 Block Diagram 51.3.2 Attribute Table 51.3.3 Optimized Pair Shortest Path Algorithm 51.3.4 Network Design and Synchronization of Multiple Nodes 51.3.5 Energy Consumption 51.3.6 Data Collection Process 51.4 Result and Discussion 51.4.1 Data Delivery Fraction 51.5 Conclusion References Chapter 52: Application of Subjective and Objective Integrated Weightage (SOIW) Method for Decision-Making (MADM) in Distribut... 52.1 Introduction 52.2 Decision-Making Methods 52.2.1 Multiple Attribute Decision-Making (MADM) 52.2.2 Subjective and Objective Integrated Weightage MADM Method 52.3 Implementation and Results 52.4 Conclusion References Chapter 53: Visual Importance Identification of Natural Images Using Location-Based Feature Selection Saliency Map 53.1 Introduction 53.2 Related Work 53.3 Proposed Location-Based Visual Saliency Map (LBVSM) 53.3.1 Visual Saliency Map Computation 53.3.2 Transformation Function for Image Feature Selection 53.4 Implementation Stages for Proposed Visual Saliency Method 53.5 Proposed Saliency Map Efficiency 53.6 Experimental Results 53.7 Comparison of Results with the State-of-the-Art Methods 53.7.1 Processing Time Comparison 53.7.2 Evaluation Metrics Receiver Operating Characteristics (ROC) 53.8 Conclusions 53.9 Future Works References Chapter 54: Missing Values and Class Prediction Based on Mutual Information and Supervised Similarity 54.1 Introduction 54.2 Related Works 54.3 Proposed Method 54.3.1 Mutual Information 54.3.2 Supervised Similarity 54.3.3 Cosine Similarity 54.3.4 Class Prediction 54.4 Implementation and Result 54.5 Conclusion References Chapter 55: Fake Product Review Detection and Removal Using Opinion Mining Through Machine Learning 55.1 Introduction 55.2 Related Work 55.3 Methodology 55.3.1 Implementation Process 55.4 Machine Learning Algorithms 55.4.1 Convolutional Neural Network 55.4.2 Recurrent Neural Network (RNN) 55.5 Detection Processes 55.6 Experimental Results 55.7 Conclusion References Chapter 56: Ask Less: Scale Market Research Without Annoying Your Customers 56.1 Introduction 56.2 Proposed Approach 56.2.1 Preparatory Phase 56.2.2 Scaling Phase 56.3 Results 56.4 Conclusion References Chapter 57: Preferential Resource Selection and Scheduling of Cloud Resources Pivot on Value of Information 57.1 Introduction 57.2 Related Work 57.3 Standard Factors Affecting Resource Selection 57.4 Proposed Workflow 57.5 Resource Selection Algorithm 57.6 Resource Selection Algorithm 57.7 Experimental Studies 57.8 Experimental Studies References Chapter 58: A Survey on Supervised and Unsupervised Learning Techniques 58.1 Introduction (Fig. 58.1) 58.2 Literature Survey 58.2.1 Supervised Learning 58.2.1.1 SVM 58.2.1.2 Decision Tree 58.2.1.3 Naïve Bayes 58.2.1.4 KNN 58.2.1.5 Regression 58.2.2 Unsupervised Learning 58.2.2.1 K-means 58.2.2.2 Agglomerative 58.2.2.3 Divisive 58.2.2.4 Neural Network 58.3 Conclusion References Chapter 59: Performance Study of IPv6/IPv4 MANET (64MANET) Architecture 59.1 Introduction 59.2 Review of Literature Review 59.3 Proposed 64MANET Architecture 59.4 Performance Study of 64MANET 59.4.1 Simulation Setup 59.4.2 Simulation Scenario 59.4.3 Simulation Results and Performance Analysis 59.4.3.1 Data Loss in Byte-Per-Rate (ByER) Study 59.4.3.2 Max Payload Overhead Data Rate Study 59.4.3.3 Throughput Study 59.4.3.4 Latency Study 59.4.3.5 Response Time Study 59.4.3.6 End-to-End Delay Study 59.4.3.7 Packet Delivery Ratio (PDR) Study 59.4.3.8 Handover Latency Study 59.5 Conclusion and Future Work References Chapter 60: Internet of Things: A Technical Perspective Survey 60.1 Introduction 60.2 Architectural Building Blocks 60.3 Enabling Technologies 60.4 Application Domains 60.4.1 Smart Home and Building 60.4.2 Smart Grid 60.4.3 Smart City 60.4.4 Healthcare 60.5 Challenges and Barriers 60.6 Conclusion References Chapter 61: Analysis on DGHV and NTRU Fully Homomorphic Encryption Schemes 61.1 Introduction 61.2 Literature Survey 61.3 Homomorphic Encryption 61.3.1 Homomorphic Scheme 61.3.2 Homomorphic Properties 61.3.2.1 Addition 61.3.2.2 Multiplication 61.4 DGHV Scheme 61.4.1 Symmetric Scheme 61.4.1.1 Homomorphic Behavior 61.4.2 Asymmetric Scheme 61.4.2.1 Key Generation 61.4.2.2 Encryption 61.4.2.3 Decryption 61.5 NTRU Scheme 61.5.1 NTRU 61.5.2 Key Generation 61.5.3 NTRU Encryption 61.5.4 NTRU Decryption 61.5.5 Homomorphic Property of NTRU 61.6 Conclusion References Chapter 62: Automated Image Captioning for Flickr8K Dataset 62.1 Introduction 62.2 Convolutional Neural Networks 62.2.1 Working of CNN 62.2.2 Feature Extraction 62.2.3 Classification 62.2.4 Fine-Tuning of Data 62.3 Recurrent Neural Network 62.3.1 Training of RNN 62.4 Region-Based CNN 62.4.1 Segmentation 62.4.2 Selective Search 62.4.3 Generating Captions 62.5 Conclusion References Chapter 63: RAkEL Algorithm and Mahalanobis Distance-Based Intrusion Detection System Against Network Intrusions 63.1 Introduction 63.2 Related Work 63.3 Proposed Methodology 63.3.1 Dataset Collection 63.3.2 Pre-processing and Feature Extraction 63.3.3 Feature Ranking and Feature Selection 63.3.4 Rules Generation 63.3.5 Attack Detection and Classification 63.4 Experimental Results and Analysis 63.5 Conclusion and Future Work References Chapter 64: Vaguely Node Classification Scheme for Wireless Networks to Design an Intrusion Detection System 64.1 Introduction 64.2 Related Work 64.3 Vaguely Node Classification Scheme 64.3.1 System Model 64.3.2 Proposed Scheme for the Classification of Vaguely Nodes 64.4 Simulation Environment 64.5 Simulation Results and Discussion 64.6 Conclusion References Chapter 65: Dynamic Traffic Light Scheduling for Emergency Vehicles Using Fog Computing 65.1 Introduction 65.2 Related Works 65.3 Proposed Work 65.3.1 XBee Module S2C 65.3.2 Arduino 65.4 Working Model 65.4.1 Function at Emergency Vehicle 65.4.2 Function at Traffic Pole 65.4.3 SD Card Module 65.5 Implementation Details 65.6 Conclusion References Chapter 66: Cloud Database - A Technical Review 66.1 Introduction 66.2 Cloud Models 66.2.1 Deployment Model 66.2.2 Service Model 66.3 Enabling Technologies 66.4 Architecture of Cloud 66.5 Cloud Database 66.6 Rationale and Significance of the Cloud Databases Study 66.6.1 Cloud DBMS Wish List 66.6.2 Cloud Service Provider Challenges 66.7 Database Infrastructures as a Service 66.7.1 DbaaS 66.7.2 Query Optimization in Cloud Databases 66.8 Cloud Database - Challenges and Issues 66.8.1 Open Research Issues 66.9 Conclusion References Chapter 67: Projection of Population and Prediction of Food Demand Through Mining and Forecasting Techniques 67.1 Introduction 67.2 Related Work 67.2.1 Taylor Series 67.2.2 Maximum Likelihood Estimation (MLE) 67.2.3 Gaussian Distribution 67.3 Proposed Method 67.3.1 Population Estimation 67.3.2 Food Requisite Distributions 67.4 Results and Discussion 67.5 Conclusion References Chapter 68: Detection of Hairline Fracture Foot Using Canny Operator and Wavelet Packet Transform 68.1 Introduction 68.2 Materials and Methods 68.3 Results and Discussions 68.4 Conclusion References Chapter 69: Image Encryption-Then-Compression System for Secure Transmission via Hybrid Henon Chaotic Map 69.1 Introduction 69.2 Related Works 69.3 Proposed Methodology 69.3.1 Image Encryption 69.3.1.1 Confusion 69.3.1.2 Shuffling 69.3.1.3 Diffusion 69.3.2 Compression using Asymmetric Numeral Method 69.4 Experimental Analysis 69.4.1 Number of Pixel Change Rate (NPCR) 69.4.2 Unified Average Changing Intensity (UACI) 69.4.3 Computation Time 69.5 Conclusion References Chapter 70: Analysis of Primary Emulsion Attack in Cognitive Radio Using Distributed On-Demand Routing Protocol 70.1 Introduction 70.2 Previous Works 70.3 Proposed Work 70.4 Implementation 70.4.1 Initial Setup 70.4.2 Distributed On-Demand Routing Protocol 70.4.3 RSA Algorithm 70.5 Comparisons 70.6 Conclusions References Chapter 71: Heart Disease Prediction Using Retinal Fundus Image 71.1 Introduction 71.2 Related Work 71.3 Methodology 71.3.1 Pre-processing Techniques 71.3.2 Segmentation Techniques 71.3.3 Edge Detection Techniques 71.4 Implementation 71.4.1 Segmentation 71.4.2 Edge Detection 71.4.3 Calculating of A/V Ratio 71.5 Result 71.6 Conclusion References Chapter 72: Blind Speech Enhancement Using Adaptive Algorithms 72.1 Introduction 72.2 Adaptive Algorithms for Blind Speech Enhancement 72.2.1 Least Mean Square 72.2.2 Normalized Least Mean Square 72.2.3 Dual Fast Normalized Least Mean Square (DFNLMS) 72.3 Analysis of Simulation Results 72.3.1 Segmental SNR (SegSNR) Evaluation 72.3.2 Segmental MSE (SegMSE) Evaluation 72.4 Conclusion References Chapter 73: Android Malware Detection 73.1 Introduction 73.2 Literature Survey 73.3 Proposed Work 73.3.1 Dataset Collection 73.3.2 Methodologies 73.4 Result Analysis 73.5 Conclusion References Chapter 74: Test Data Compression Methods: A Review 74.1 Introduction 74.2 Test Data Compression Strategies 74.3 Linear Decompression-Based Schemes 74.3.1 Combinational Decompressors 74.3.2 Sequential Decompressor 74.3.3 Combined Linear and Nonlinear Decompressor 74.4 Code-Based Test Data Compression Techniques 74.4.1 Dictionary-Based Code 74.4.2 Huffman Code 74.4.3 Run-Length Code 74.5 Broadcast-Scan-Based Schemes 74.6 Other Compression Techniques and Classification by DFT Vendors 74.7 Conclusion References Chapter 75: Piripori: Morphological Analyser for Tamil 75.1 Introduction 75.2 Literature Review 75.3 Foundation of Piripori 75.3.1 Patterns 75.3.2 Rules 75.3.3 Exceptions 75.4 Architecture of Piripori 75.5 Results and Discussion 75.5.1 Analysis Time 75.5.2 Precision and Recall 75.6 Conclusion References Chapter 76: A Comprehensive Survey on Strategies in Multicore Architectures, Design Considerations and Challenges 76.1 Introduction 76.2 Challenges and Issues in Multicore Architecture 76.3 Design Models of Multicore Processors 76.4 Conclusion References Chapter 77: Blockchain-based e-Voting as a Service 77.1 Introduction 77.2 Blockchain Fundamentals 77.2.1 Blockchain Applications 77.2.1.1 Cost Reduction 77.2.1.2 Enhancement of Accountability and Transparency 77.2.1.3 Service Delivery Improvement and Facilitation of e-Society 77.3 Characteristics of Voting 77.3.1 Accessibility 77.3.2 Accuracy 77.3.3 Privacy 77.3.4 Mobility 77.4 Synergy Between Blockchain and e-Voting 77.4.1 Confidentiality and Integrity 77.4.2 Auditability and Accuracy 77.4.3 Privacy 77.4.4 Authentication 77.4.5 Mobility of Ballots and Voters 77.5 Agent-Based Model and Its Need 77.5.1 Registration Agent 77.5.2 Authentication Agent 77.5.3 Authorization Agent 77.5.4 Monitoring Agent 77.5.5 Alert Agent 77.6 The Need for Blockchain-Based e-Voting and Its Advantages 77.6.1 Distributed Denial-of-Service (DDoS) Attack 77.6.2 Man-in-the-Middle Attack 77.7 Conclusion References Chapter 78: Optimum Resource Allocation Techniques for Enhancing Quality of Service Parameters in Cloud Environment 78.1 Introduction 78.2 Related Works 78.3 Proposed Works 78.3.1 Multi-Agent-Based Dynamic Resource Allocation 78.3.2 Multistage Framework for Improving QoS in Resource Allocation 78.3.3 Artificial Immune System-Directed Acyclic Graph Model-Based Resource Allocation 78.4 Experimental Results and Discussion 78.5 Conclusion References Chapter 79: MIPGIOT: Monitoring and Improving the Productivity in Garment Unit Using IOT 79.1 Introduction 79.2 Literature Survey 79.3 MIPGIOT: The Proposed Methodology for Measuring and Improving the Productivity in Garment Unit 79.3.1 MIPGIOT: Proposed Idea 79.4 Implementation of the Proposed Method 79.4.1 MIPGIOT: Implementation Process 79.4.2 MIPGIOT: Results Achieved 79.5 Conclusion References Chapter 80: Text and Audio Transfer Using LI-FI Technology 80.1 Introduction 80.1.1 Light Fidelity 80.1.2 Problem Definition 80.1.3 Objective 80.2 Literature Review 80.2.1 Drawbacks of Wi-Fi 80.3 System Design 80.3.1 Working of Data Transfer 80.3.2 Working of Transmitter 80.3.3 Working of Receiver 80.4 Software Implementation 80.4.1 Modules Description 80.4.2 Home Page 80.4.3 Transmitting of Binary Data 80.4.4 Receiving the Data 80.5 Audio Streaming Through Li-Fi 80.5.1 Working of Audio Transfer 80.6 Implementation 80.6.1 Binary Data Transfer Through Li-Fi 80.6.2 Audio Transfer Through Li-Fi 80.7 Results and Discussion 80.8 Conclusion and Future Work References Chapter 81: Hyperspectral Image Segmentation Using Evolutionary Multifactorial Spectral Analysis for OMEGA Dataset 81.1 Introduction 81.2 Related Work 81.3 Proposed Model of Evolutionary Multifactorial Spectral Analysis (ESA) 81.3.1 A Subsection Sample Selection of Spectral Features: Mineral Selection for Classification 81.3.2 Classification of the Hyperspectral Features 81.4 Experimental Analysis 81.5 Conclusion and Future Scope References Chapter 82: Novel Lifting Filter Bank for Bird Call Analysis 82.1 Classification of Lifting Techniques 82.2 Cohen-Daubaches-Feauveau (CDF) Wavelet Filter 82.2.1 Filters Used for Bird Call Analysis 82.2.2 Lifting Scheme Algorithm 82.2.2.1 Algorithm for First-Level Decomposition (Fig. 82.4) 82.2.3 Bird Call Analysis 82.3 Conclusion References Chapter 83: Automatic Classification of Solid Waste Using Deep Learning 83.1 Introduction 83.1.1 Objective 83.1.2 Scope of the Proposed Methodology 83.2 Related Work 83.3 Methodology 83.3.1 Dataset Collection 83.3.2 Processing Datasets 83.3.3 Types of Wastes 83.4 Implementation 83.4.1 Algorithm Used: Convolution Neural Network 83.4.2 Steps Involved 83.4.3 Flow Chart (Fig. 83.3) 83.4.4 Model Development 83.5 Experimental Results 83.6 Conclusion References Chapter 84: Relevancy and Similarity Aware Drug Comment Classification Framework on Social Media Drug Posts 84.1 Introduction 84.2 Related Works 84.3 Relevancy and Similarity Aware Drug Comment Classification Framework 84.4 Experimental Results 84.5 Conclusion References Chapter 85: Enhanced Particle Swarm Optimization with Genetic Algorithm and Modified Artificial Neural Network for Efficient F... 85.1 Introduction 85.2 Literature Survey 85.3 Proposed Methodology 85.3.1 Dataset Collection 85.3.2 Fuzzy C Means (FCM) Clustering Algorithm 85.3.3 Enhanced Particle Swarm Optimization with Genetic Algorithm Based Attribute Selection 85.3.4 Modified Artificial Neural Network (ANN) 85.4 Experimental Results 85.5 Conclusion References Chapter 86: Feature Selection Techniques for Email Spam Classification: A Survey 86.1 Introduction 86.1.1 Filter Method 86.1.2 Wrapper Method 86.1.3 Embedded Method 86.2 Overview of Email Spam Detection 86.2.1 Dataset 86.2.2 Evolutionary Algorithms 86.2.3 Classification Algorithms 86.3 Related Works 86.4 Conclusion References Chapter 87: A Novel Paradigm Towards Exploration of Rechargeable WSN Through Deep Learning Architecture for Prolonging Network... 87.1 Introduction 87.1.1 A Subsection Sample 87.2 Related Works 87.2.1 Distributed Cooperative Relaying Low Energy Adaptive Clustering Hierarchy Protocol 87.2.2 Bayesian Compressive Data Gathering Protocol 87.3 Proposed Model 87.3.1 Network Model 87.3.2 Mobile Sink 87.3.3 Dynamic Source Routing 87.3.4 Deep Belief Network 87.4 Simulation Results 87.4.1 Throughput 87.4.2 Routing Overhead 87.5 Conclusion References Chapter 88: Why Feature Selection in Data Mining Is Prominent? A Survey 88.1 Introduction 88.2 Importance of Feature Selection 88.3 Defining Relevancy and Redundancy of Features 88.3.1 Feature Relevancy 88.3.2 Feature Redundancy 88.4 Literature Survey on Feature Selection Techniques in Various Applications 88.4.1 Literature Survey on Feature Selection in the Year 2015 88.4.2 Literature Survey on Feature Selection in the Year 2016 88.4.3 Literature Survey on Feature Selection in the Year 2017 88.4.4 Literature Survey on Feature Selection in the Year 2018 88.5 Outcome of the Literature Survey 88.6 Research Directions 88.7 Conclusion References