دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 2
نویسندگان: Michael B. Cutlip
سری:
ISBN (شابک) : 0131482041, 9780131482043
ناشر: Prentice Hall
سال نشر: 2007
تعداد صفحات: 752
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 11 مگابایت
در صورت تبدیل فایل کتاب Problem Solving in Chemical and Biochemical Engineering with POLYMATH, Excel, and MATLAB (Prentice Hall International Series in the Physical and Chemical Engineering Sciences) به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب حل مسئله در مهندسی شیمی و بیوشیمی با POLYMATH، Excel و MATLAB (سری بین المللی پرنتیس هال در علوم مهندسی فیزیک و شیمی) نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
حل مسئله در مهندسی شیمی و بیوشیمی با POLYMATH™، Excel و MATLAB®، ویرایش دوم، یک منبع ارزشمند و همراه است که استفاده از مسئله عددی را یکپارچه می کند. حل در سه بسته نرم افزاری پرکاربرد: POLYMATH، Microsoft Excel و MATLAB. قابلیتهای اخیراً توسعهیافته POLYMATH امکان ایجاد خودکار صفحات گسترده Excel و تولید کد MATLAB برای راهحلهای مشکل را فراهم میکند. دانشجویان و مهندسین حرفهای از سهولت وارد کردن مسائل به POLYMATH و سپس حل مستقل در هر سه بسته نرمافزاری و در عین حال بهرهگیری کامل از قابلیتهای منحصربهفرد هر بسته قدردانی خواهند کرد. این کتاب شامل بیش از 170 مسئله است که نیاز به راهحلهای عددی دارند.
این ویرایش دوم بسیار توسعهیافته و اصلاحشده شامل فصلهای جدیدی درباره شروع و استفاده از Excel و MATLAB است. همچنین تاکید ویژه ای بر مهندسی بیوشیمی با یک فصل اصلی در مورد موضوع و با ادغام مسائل بیوشیمیایی در سراسر کتاب دارد.
موضوعات کلی و حوزه های موضوعی، سازماندهی شده توسط فصلProblem Solving in Chemical and Biochemical Engineering with POLYMATH™, Excel, and MATLAB®, Second Edition, is a valuable resource and companion that integrates the use of numerical problem solving in the three most widely used software packages: POLYMATH, Microsoft Excel, and MATLAB. Recently developed POLYMATH capabilities allow the automatic creation of Excel spreadsheets and the generation of MATLAB code for problem solutions. Students and professional engineers will appreciate the ease with which problems can be entered into POLYMATH and then solved independently in all three software packages, while taking full advantage of the unique capabilities within each package. The book includes more than 170 problems requiring numerical solutions.
This greatly expanded and revised second edition includes new chapters on getting started with and using Excel and MATLAB. It also places special emphasis on biochemical engineering with a major chapter on the subject and with the integration of biochemical problems throughout the book.
General Topics and Subject Areas, Organized by ChapterCover CONTENTS PREFACE Chapter 1 Problem Solving with Mathematical Software Packages 1.1 EFFICIENT PROBLEM SOLVING—THE OBJECTIVE OF THIS BOOK 1.2 FROM MANUAL PROBLEM SOLVING TO USE OF MATHEMATICAL SOFTWARE 1.3 CATEGORIZING PROBLEMS ACCORDING TO THE SOLUTION TECHNIQUE USED 1.4 EFFECTIVE USE OF THIS BOOK 1.5 SOFTWARE USAGE WITH THIS BOOK 1.6 WEB-BASED RESOURCES FOR THIS BOOK Chapter 2 Basic Principles and Calculations 2.1 MOLAR VOLUME AND COMPRESSIBILITY FACTOR FROM VAN DER WAALS EQUATION 2.2 MOLAR VOLUME AND COMPRESSIBILITY FACTOR FROM REDLICH-KWONG EQUATION 2.3 STOICHIOMETRIC CALCULATIONS FOR BIOLOGICAL REACTIONS 2.4 STEADY-STATE MATERIAL BALANCES ON A SEPARATION TRAIN 2.5 FITTING POLYNOMIALS AND CORRELATION EQUATIONS TO VAPOR PRESSURE DATA 2.6 VAPOR PRESSURE CORRELATIONS FOR SULFUR COMPOUNDS IN PETROLEUM 2.7 MEAN HEAT CAPACITY OF n-PROPANE 2.8 VAPOR PRESSURE CORRELATION BY CLAPEYRON AND ANTOINE EQUATIONS 2.9 GAS VOLUME CALCULATIONS USING VARIOUS EQUATIONS OF STATE 2.10 BUBBLE POINT CALCULATION FOR AN IDEAL BINARY MIXTURE 2.11 DEW POINT CALCULATION FOR AN IDEAL BINARY MIXTURE 2.12 BUBBLE POINT AND DEW POINT FOR AN IDEAL MULTICOMPONENT MIXTURE 2.13 ADIABATIC FLAME TEMPERATURE IN COMBUSTION 2.14 UNSTEADY-STATE MIXING IN A TANK 2.15 UNSTEADY-STATE MIXING IN A SERIES OF TANKS 2.16 HEAT EXCHANGE IN A SERIES OF TANKS REFERENCES Chapter 3 Regression and Correlation of Data 3.1 ESTIMATION OF ANTOINE EQUATION PARAMETERS USING NONLINEAR REGRESSION 3.2 ANTOINE EQUATION PARAMETERS FOR VARIOUS HYDROCARBONS 3.3 CORRELATION OF THERMODYNAMIC AND PHYSICAL PROPERTIES OF n-PROPANE 3.4 TEMPERATURE DEPENDENCY OF SELECTED PROPERTIES 3.5 HEAT TRANSFER CORRELATIONS FROM DIMENSIONAL ANALYSIS 3.6 HEAT TRANSFER CORRELATION OF LIQUIDS IN TUBES 3.7 HEAT TRANSFER IN FLUIDIZED BED REACTOR 3.8 CORRELATION OF BINARY ACTIVITY COEFFICIENTS USING MARGULES EQUATIONS 3.9 MARGULES EQUATIONS FOR BINARY SYSTEMS CONTAINING TRICHLOROETHANE 3.10 RATE DATA ANALYSIS FOR A CATALYTIC REFORMING REACTION 3.11 REGRESSION OF RATE DATA–CHECKING DEPENDENCY AMONG VARIABLES 3.12 REGRESSION OF HETEROGENEOUS CATALYTIC RATE DATA 3.13 VARIATION OF REACTION RATE CONSTANT WITH TEMPERATURE 3.14 CALCULATION OF ANTOINE EQUATION PARAMETERS USING LINEAR REGRESSION REFERENCES Chapter 4 Problem Solving with Excel 4.1 MOLAR VOLUME AND COMPRESSIBILITY FROM REDLICH-KWONG EQUATION 4.2 CALCULATION OF THE FLOW RATE IN A PIPELINE 4.3 ADIABATIC OPERATION OF A TUBULAR REACTOR FOR CRACKING OF ACETONE 4.4 CORRELATION OF THE PHYSICAL PROPERTIES OF ETHANE 4.5 COMPLEX CHEMICAL EQUILIBRIUM BY GIBBS ENERGY MINIMIZATION REFERENCES Chapter 5 Problem Solving with MATLAB 5.1 MOLAR VOLUME AND COMPRESSIBILITY FROM REDLICH-KWONG EQUATION 5.2 CALCULATION OF THE FLOW RATE IN A PIPELINE 5.3 ADIABATIC OPERATION OF A TUBULAR REACTOR FOR CRACKING OF ACETONE 5.4 CORRELATION OF THE PHYSICAL PROPERTIES OF ETHANE 5.5 COMPLEX CHEMICAL EQUILIBRIUM BY GIBBS ENERGY MINIMIZATION REFERENCE Chapter 6 Advanced Techniques in Problem Solving 6.1 SOLUTION OF STIFF ORDINARY DIFFERENTIAL EQUATIONS 6.2 STIFF ORDINARY DIFFERENTIAL EQUATIONS IN CHEMICAL KINETICS 6.3 MULTIPLE STEADY STATES IN A SYSTEM OF ORDINARY DIFFERENTIAL EQUATIONS 6.4 ITERATIVE SOLUTION OF ODE BOUNDARY VALUE PROBLEM 6.5 SHOOTING METHOD FOR SOLVING TWO-POINT BOUNDARY VALUE PROBLEMS 6.6 EXPEDITING THE SOLUTION OF SYSTEMS OF NONLINEAR ALGEBRAIC EQUATIONS 6.7 SOLVING DIFFERENTIAL ALGEBRAIC EQUATIONS—DAEs 6.8 METHOD OF LINES FOR PARTIAL DIFFERENTIAL EQUATIONS 6.9 ESTIMATING MODEL PARAMETERS INVOLVING ODEs USING FERMENTATION DATA REFERENCES Chapter 7 Thermodynamics 7.1 COMPRESSIBILITY FACTOR VARIATION FROM VAN DER WAALS EQUATION 7.2 COMPRESSIBILITY FACTOR VARIATION FROM VARIOUS EQUATIONS OF STATE 7.3 ISOTHERMAL COMPRESSION OF GAS USING REDLICH-KWONG EQUATION OF STATE 7.4 THERMODYNAMIC PROPERTIES OF STEAM FROM REDLICH-KWONG EQUATION 7.5 ENTHALPY AND ENTROPY DEPARTURE USING THE REDLICH-KWONG EQUATION 7.6 FUGACITY COEFFICIENTS OF PURE FLUIDS FROM VARIOUS EQUATIONS OF STATE 7.7 FUGACITY COEFFICIENTS FOR AMMONIA—EXPERIMENTAL AND PREDICTED 7.8 FLASH EVAPORATION OF AN IDEAL MULTICOMPONENT MIXTURE 7.9 FLASH EVAPORATION OF VARIOUS HYDROCARBON MIXTURES 7.10 CORRELATION OF ACTIVITY COEFFICIENTS WITH THE VAN LAAR EQUATIONS 7.11 VAPOR LIQUID EQUILIBRIUM DATA FROM TOTAL PRESSURE MEASUREMENTS I 7.12 VAPOR LIQUID EQUILIBRIUM DATA FROM TOTAL PRESSURE MEASUREMENTS II 7.13 COMPLEX CHEMICAL EQUILIBRIUM 7.14 REACTION EQUILIBRIUM AT CONSTANT PRESSURE OR CONSTANT VOLUME REFERENCES Chapter 8 Fluid Mechanics 8.1 LAMINAR FLOW OF A NEWTONIAN FLUID IN A HORIZONTAL PIPE 8.2 LAMINAR FLOW OF NON-NEWTONIAN FLUIDS IN A HORIZONTAL PIPE 8.3 VERTICAL LAMINAR FLOW OF A LIQUID FILM 8.4 LAMINAR FLOW OF NON-NEWTONIAN FLUIDS IN A HORIZONTAL ANNULUS 8.5 TEMPERATURE DEPENDENCY OF DENSITY AND VISCOSITY OF VARIOUS LIQUIDS 8.6 TERMINAL VELOCITY OF FALLING PARTICLES 8.7 COMPARISON OF FRICTION FACTOR CORRELATIONS FOR TURBULENT PIPE FLOW 8.8 CALCULATIONS INVOLVING FRICTION FACTORS FOR FLOW IN PIPES 8.9 AVERAGE VELOCITY IN TURBULENT SMOOTH PIPE FLOW FROM MAXIMUM VELOCITY 8.10 CALCULATION OF THE FLOW RATE IN A PIPELINE 8.11 FLOW DISTRIBUTION IN A PIPELINE NETWORK 8.12 WATER DISTRIBUTION NETWORK 8.13 PIPE AND PUMP NETWORK 8.14 OPTIMAL PIPE LENGTH FOR DRAINING A CYLINDRICAL TANK IN TURBULENT FLOW 8.15 OPTIMAL PIPE LENGTH FOR DRAINING A CYLINDRICAL TANK IN LAMINAR FLOW 8.16 BASEBALL TRAJECTORIES AS A FUNCTION OF ELEVATION 8.17 VELOCITY PROFILES FOR A WALL SUDDENLY SET IN MOTION— LAMINAR FLOW 8.18 BOUNDARY LAYER FLOW OF A NEWTONIAN FLUID ON A FLAT PLATE REFERENCES Chapter 9 Heat Transfer 9.1 ONE-DIMENSIONAL HEAT TRANSFER THROUGH A MULTILAYERED WALL 9.2 HEAT CONDUCTION IN A WIRE WITH ELECTRICAL HEAT SOURCE AND INSULATION 9.3 RADIAL HEAT TRANSFER BY CONDUCTION WITH CONVECTION AT BOUNDARIES 9.4 ENERGY LOSS FROM AN INSULATED PIPE 9.5 HEAT LOSS THROUGH PIPE FLANGES 9.6 HEAT TRANSFER FROM A HORIZONTAL CYLINDER ATTACHED TO A HEATED WALL 9.7 HEAT TRANSFER FROM A TRIANGULAR FIN 9.8 SINGLE-PASS HEAT EXCHANGER WITH CONVECTIVE HEAT TRANSFER ON TUBE SIDE 9.9 DOUBLE-PIPE HEAT EXCHANGER 9.10 HEAT LOSSES FROM AN UNINSULATED TANK DUE TO CONVECTION 9.11 UNSTEADY-STATE RADIATION TO A THIN PLATE 9.12 UNSTEADY-STATE CONDUCTION WITHIN A SEMI-INFINITE SLAB 9.13 COOLING OF A SOLID SPHERE IN A FINITE WATER BATH 9.14 UNSTEADY-STATE CONDUCTION IN TWO DIMENSIONS REFERENCES Chapter 10 Mass Transfer 10.1 ONE-DIMENSIONAL BINARY MASS TRANSFER IN A STEFAN TUBE 10.2 MASS TRANSFER IN A PACKED BED WITH KNOWN MASS TRANSFER COEFFICIENT 10.3 SLOW SUBLIMATION OF A SOLID SPHERE 10.4 CONTROLLED DRUG DELIVERY BY DISSOLUTION OF PILL COATING 10.5 DIFFUSION WITH SIMULTANEOUS REACTION IN ISOTHERMAL CATALYST PARTICLES 10.6 GENERAL EFFECTIVENESS FACTOR CALCULATIONS FOR FIRST-ORDER REACTIONS 10.7 SIMULTANEOUS DIFFUSION AND REVERSIBLE REACTION IN A CATALYTIC LAYER 10.8 SIMULTANEOUS MULTICOMPONENT DIFFUSION OF GASES 10.9 MULTICOMPONENT DIFFUSION OF ACETONE AND METHANOL IN AIR 10.10 MULTICOMPONENT DIFFUSION IN A POROUS LAYER COVERING A CATALYST 10.11 SECOND-ORDER REACTION WITH DIFFUSION IN LIQUID FILM 10.12 SIMULTANEOUS HEAT AND MASS TRANSFER IN CATALYST PARTICLES 10.13 UNSTEADY-STATE MASS TRANSFER IN A SLAB 10.14 UNSTEADY-STATE DIFFUSION AND REACTION IN A SEMI-INFINITE SLAB 10.15 DIFFUSION AND REACTION IN A FALLING LAMINAR LIQUID FILM REFERENCES Chapter 11 Chemical Reaction Engineering 11.1 PLUG-FLOW REACTOR WITH VOLUME CHANGE DURING REACTION 11.2 VARIATION OF CONVERSION WITH REACTION ORDER IN A PLUG-FLOW REACTOR 11.3 GAS PHASE REACTION IN A PACKED BED REACTOR WITH PRESSURE DROP 11.4 CATALYTIC REACTOR WITH MEMBRANE SEPARATION 11.5 SEMIBATCH REACTOR WITH REVERSIBLE LIQUID PHASE REACTION 11.6 OPERATION OF THREE CONTINUOUS STIRRED TANK REACTORS IN SERIES 11.7 DIFFERENTIAL METHOD OF RATE DATA ANALYSIS IN A BATCH REACTOR 11.8 INTEGRAL METHOD OF RATE DATA ANALYSIS IN A BATCH REACTOR 11.9 INTEGRAL METHOD OF RATE DATA ANALYSIS—BIMOLECULAR REACTION 11.10 INITIAL RATE METHOD OF DATA ANALYSIS 11.11 HALF-LIFE METHOD FOR RATE DATA ANALYSIS 11.12 METHOD OF EXCESS FOR RATE DATA ANALYSIS IN A BATCH REACTOR 11.13 RATE DATA ANALYSIS FOR A CSTR 11.14 DIFFERENTIAL RATE DATA ANALYSIS FOR A PLUG-FLOW REACTOR 11.15 INTEGRAL RATE DATA ANALYSIS FOR A PLUG-FLOW REACTOR 11.16 DETERMINATION OF RATE EXPRESSIONS FOR A CATALYTIC REACTION 11.17 PACKED BED REACTOR DESIGN FOR A GAS PHASE CATALYTIC REACTION 11.18 CATALYST DECAY IN A PACKED BED REACTOR MODELED BY A SERIES OF CSTRS 11.19 DESIGN FOR CATALYST DEACTIVATION IN A STRAIGHT-THROUGH REACTOR 11.20 ENZYMATIC REACTIONS IN A BATCH REACTOR 11.21 ISOTHERMAL BATCH REACTOR DESIGN FOR MULTIPLE REACTIONS 11.22 MATERIAL AND ENERGY BALANCES ON A BATCH REACTOR 11.23 OPERATION OF A COOLED EXOTHERMIC CSTR 11.24 EXOTHERMIC REVERSIBLE GAS PHASE REACTION IN A PACKED BED REACTOR 11.25 TEMPERATURE EFFECTS WITH EXOTHERMIC REACTIONS 11.26 DIFFUSION WITH MULTIPLE REACTIONS IN POROUS CATALYST PARTICLES 11.27 NITRIFICATION OF BIOMASS IN A FLUIDIZED BED REACTOR 11.28 STERILIZATION KINETICS AND EXTINCTION PROBABILITIES IN BATCH FERMENTERS REFERENCES Chapter 12 Phase Equilibria and Distillation 12.1 THREE STAGE FLASH EVAPORATOR FOR RECOVERING HEXANE FROM OCTANE 12.2 NON-IDEAL VAPOR-LIQUID AND LIQUID-LIQUID EQUILIBRIUM 12.3 CALCULATION OF WILSON EQUATION COEFFICIENTS FROM AZEOTROPIC DATA 12.4 VAN LAAR EQUATIONS COEFFICIENTS FROM AZEOTROPIC DATA 12.5 NON-IDEAL VLE FROM AZEOTROPIC DATA USING THE VAN LAAR EQUATIONS 12.6 FENSKE-UNDERWOOD-GILLILAND CORRELATIONS FOR SEPARATION TOWERS 12.7 FENSKE-UNDERWOOD-GILLILAND CORRELATIONS IN DEPROPANIZER DESIGN 12.8 RIGOROUS DISTILLATION CALCULATIONS FOR A SIMPLE SEPARATION TOWER 12.9 RIGOROUS DISTILLATION CALCULATIONS FOR HEXANE-OCTANE SEPARATION TOWER 12.10 BATCH DISTILLATION OF A WATER-ETHANOL MIXTURE 12.11 DYNAMICS OF BATCH DISTILLATION OF FERMENTER BROTH REFERENCES Chapter 13 Process Dynamics and Control 13.1 MODELING THE DYNAMICS OF FIRST-AND SECOND-ORDER SYSTEMS 13.2 DYNAMICS OF A U-TUBE MANOMETER 13.3 DYNAMICS AND STABILITY OF AN EXOTHERMIC CSTR 13.4 FITTING A FIRST-ORDER PLUS DEAD-TIME MODEL TO PROCESS DATA 13.5 DYNAMICS AND CONTROL OF A FLOW-THROUGH STORAGE TANK 13.6 DYNAMICS AND CONTROL OF A STIRRED TANK HEATER 13.7 CONTROLLER TUNING USING INTERNAL MODEL CONTROL (IMC) CORRELATIONS 13.8 FIRST ORDER PLUS DEAD TIME MODELS FOR STIRRED TANK HEATER 13.9 CLOSED-LOOP CONTROLLER TUNING–THE ZIEGLER-NICHOLS METHOD 13.10 PI CONTROLLER TUNING USING THE AUTO TUNE VARIATION “ATV” METHOD 13.11 RESET WINDUP IN A STIRRED TANK HEATER 13.12 TEMPERATURE CONTROL AND STARTUP OF A NONISOTHERMAL CSTR 13.13 LEVEL CONTROL OF TWO INTERACTIVE TANKS 13.14 PI CONTROL OF FERMENTER TEMPERATURE 13.15 INSULIN DELIVERY TO DIABETICS USING PI CONTROL REFERENCES Chapter 14 Biochemical Engineering 14.1 ELEMENTARY STEP AND APPROXIMATE MODELS FOR ENZYME KINETICS 14.2 DETERMINATION AND MODELING INHIBITION FOR ENZYME-CATALYZED REACTIONS 14.3 BIOREACTOR DESIGN WITH ENZYME CATALYSTS—TEMPERATURE EFFECTS 14.4 OPTIMIZATION OF TEMPERATURE IN BATCH AND CSTR ENZYMATIC REACTORS 14.5 DIFFUSION WITH REACTION IN SPHERICAL IMMOBILIZED ENZYME PARTICLES 14.6 MULTIPLE STEADY STATES IN A CHEMOSTAT WITH INHIBITED MICROBIAL GROWTH 14.7 FITTING PARAMETERS IN THE MONOD EQUATION FOR A BATCH CULTURE 14.8 MODELING AND ANALYSIS OF KINETICS IN A CHEMOSTAT 14.9 DYNAMIC MODELING OF A CHEMOSTAT 14.10 PREDATOR-PREY DYNAMICS OF MIXED CULTURES IN A CHEMOSTAT 14.11 BIOKINETIC MODELING INCORPORATING IMPERFECT MIXING IN A CHEMOSTAT 14.12 DYNAMIC MODELING OF A CHEMOSTAT SYSTEM WITH TWO STAGES 14.13 SEMICONTINUOUS FED-BATCH AND CYCLIC-FED BATCH OPERATION 14.14 OPTIMIZATION OF ETHANOL PRODUCTION IN A BATCH FERMENTER 14.15 ETHANOL PRODUCTION IN A WELL-MIXED FERMENTER WITH CELL RECYCLE 14.16 DYNAMIC MODELING OF AN ANAEROBIC DIGESTER 14.17 START-UP AND CONTROL OF AN ANAEROBIC DIGESTER REFERENCES Appendix A Appendix B Appendix C Appendix D Appendix E Appendix F INDEX A B C D E F G H I L M N O P Q R S T U V W Z