ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Probability Theory: An Introductory Course

دانلود کتاب نظریه احتمال: یک دوره مقدماتی

Probability Theory: An Introductory Course

مشخصات کتاب

Probability Theory: An Introductory Course

ویرایش:  
نویسندگان:   
سری: Springer Textbook 
ISBN (شابک) : 9783540533481, 9783662028452 
ناشر: Springer Berlin Heidelberg 
سال نشر: 1992 
تعداد صفحات: 147 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 4 مگابایت 

قیمت کتاب (تومان) : 32,000

در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد



کلمات کلیدی مربوط به کتاب نظریه احتمال: یک دوره مقدماتی: نظریه احتمال و فرآیندهای تصادفی



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 16


در صورت تبدیل فایل کتاب Probability Theory: An Introductory Course به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب نظریه احتمال: یک دوره مقدماتی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب نظریه احتمال: یک دوره مقدماتی

کتاب سینا دانش‌آموز را از طریق مطالب استاندارد نظریه احتمال، با توقف در طول مسیر برای موضوعات جالبی مانند مکانیک آماری، که معمولاً در کتابی برای مبتدیان گنجانده نمی‌شود، راهنمایی می‌کند. بخش اول کتاب، متغیرهای تصادفی گسسته را با استفاده از همین رویکرد، بر اساس بدیهیات احتمالات کولموگروف، که بعداً برای حالت کلی استفاده شد، پوشش می‌دهد. متن به شانزده سخنرانی تقسیم شده است که هر یک موضوع اصلی را پوشش می دهد. مفاهیم مقدماتی و نتایج کلاسیک البته شامل: متغیرهای تصادفی، قضیه حد مرکزی، قانون اعداد بزرگ، احتمال شرطی، پیاده‌روی‌های تصادفی و غیره است. علاوه بر مکانیک آماری، موضوعات جالب و کمتر رایج دیگری که در کتاب یافت می شوند عبارتند از: نفوذ، مفهوم پایداری در قضیه حد مرکزی و مطالعه احتمال انحرافات بزرگ. کمی بیشتر از یک دوره کارشناسی استاندارد در تحلیل برای خواننده فرض می شود. مفاهیم نظریه اندازه گیری و ادغام Lebesgue در نیمه دوم متن معرفی شده اند. این کتاب برای دانش آموزان سال دوم یا سوم در رشته های ریاضی، فیزیک یا سایر علوم طبیعی مناسب است. همچنین می تواند توسط خوانندگان پیشرفته تری که می خواهند ریاضیات نظریه احتمالات و برخی از کاربردهای آن در فیزیک آماری را یاد بگیرند، استفاده شود.


توضیحاتی درمورد کتاب به خارجی

Sinai's book leads the student through the standard material for ProbabilityTheory, with stops along the way for interesting topics such as statistical mechanics, not usually included in a book for beginners. The first part of the book covers discrete random variables, using the same approach, basedon Kolmogorov's axioms for probability, used later for the general case. The text is divided into sixteen lectures, each covering a major topic. The introductory notions and classical results are included, of course: random variables, the central limit theorem, the law of large numbers, conditional probability, random walks, etc. Sinai's style is accessible and clear, with interesting examples to accompany new ideas. Besides statistical mechanics, other interesting, less common topics found in the book are: percolation, the concept of stability in the central limit theorem and the study of probability of large deviations. Little more than a standard undergraduate course in analysis is assumed of the reader. Notions from measure theory and Lebesgue integration are introduced in the second half of the text. The book is suitable for second or third year students in mathematics, physics or other natural sciences. It could also be usedby more advanced readers who want to learn the mathematics of probability theory and some of its applications in statistical physics.



فهرست مطالب

Front Matter....Pages i-viii
Probability Spaces and Random Variables....Pages 1-14
Independent Identical Trials and the Law of Large Numbers....Pages 15-29
De Moivre-Laplace and Poisson Limit Theorems....Pages 30-42
Conditional Probability and Independence....Pages 43-53
Markov Chains....Pages 54-66
Random Walks on the Lattice ℤ d ....Pages 67-72
Branching Processes....Pages 73-77
Conditional Probabilities and Expectations....Pages 78-82
Multivariate Normal Distributions....Pages 83-88
The Problem of Percolation....Pages 89-94
Distribution Functions, Lebesgue Integrals and Mathematical Expectation....Pages 95-103
General Definition of Independent Random Variables and Laws of Large Numbers....Pages 104-112
Weak Convergence of Probability Measures on the Line and Helly’s Theorems....Pages 113-119
Characteristic Functions....Pages 120-126
Central Limit Theorem for Sums of Independent Random Variables....Pages 127-133
Probabilities of Large Deviations....Pages 134-138
Back Matter....Pages 139-140




نظرات کاربران