دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 3
نویسندگان: T. Veerarajan
سری:
ISBN (شابک) : 0070669252, 9780070669253
ناشر: McGraw-Hill Education
سال نشر: 2008
تعداد صفحات: 609
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 29 مگابایت
در صورت تبدیل فایل کتاب Probability - Statistics and Random Processes به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب احتمال - آمار و فرآیندهای تصادفی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب با ترکیب مناسب تئوری و کاربردها به منظور ارائه دانش کامل در مورد مفاهیم اولیه احتمال، آمار و متغیرهای تصادفی به دانشجویان کارشناسی مهندسی طراحی شده است. افزودن موضوعات مهم بر اساس الزامات سیلابس اساس این بازنگری است.
This book with the right blend of theory and applications is designed to provide a thorough knowledge on the basic concepts of Probability, Statistics and Random Variables offered to the undergraduate students of engineering. Addition of important topics as per the syllabi requirements is the basis of this revision.
Title Contents Preface to the Third Edition Preface to the First Edition 1. Probability Theory Random Experiment Mathematical or Apriori Definition of Probability Statistical or Aposteriori Definition of Probability Axiomatic Definition of Probability Conditional Probability Independent Events Worked Examples 1(A) Exercise 1(A) Theorem of Total Probability Bayes’ Theorem or Theorem of Probability of Causes Worked Examples 1(B) Exercise 1(B) Bernoulli’s Trials De Moivre–Laplace Approximation Generalisation of Bernoulli’s Theorem Multinomial Distribution Worked Examples 1(C) Exercise 1(C) Answers 2. Random Variables Discrete Random Variable Probability Function Continuous Random Variable Probability Density Function Cumulative Distribution Function (cdf) Properties of the cdf F(x) Special Distributions Discrete Distributions Continuous Distributions Worked Examples 2(A) Exercise 2(A) Two-Dimensional Random Variables Joint Probability Density Function Cumulative Distribution Function Properties of F(x, y) Marginal Probability Distribution Conditional Probability Distribution Independent RVs Random Vectors Worked Examples 2(B) Marginal Probability Distribution of X: {i, pi*} Marginal Probability Distribution of Y: { j, p*j} Exercise 2(B) Answers 3. Functions of Random Variables Functions of One Random Variable How to Find fy(y), when fx(x) is Known One Function of Two Random Variables Two Functions of Two Random Variables An alternative method to find the pdf of Z = g(X, Y ) Workd Examples 3 Exercise 3 Answers 4. Statistical Averages Statistical Measures Measures of Central Tendency Mathematical Expectation and Moments Relation Between Central and Non-central Moments Dispersion Definisions The Coefficient of Variation Skewness Kurtosis Pearson’s Shape Coefficients Expected Values of a Two-Dimensional RV Properties of Expected Values Conditional Expected Values Properties Worked Examples 4(A) Exercise 4(A) Linear Correlation Correlation Coefficient Properties of Correlation Coefficient Rank Correlation Coefficient Worked Examples 4(B) Exercise 4(B) Regression Equation of the Regression Line of Y on X Standard Error of Estimate of Y Worked Examples 4(C) Exercise 4(C) Characteristic Function Properties of MGF Properties of Characteristic Function Cumulant Generating Function (CGF) Joint Characteristic Function Worked Examples 4(D) Exercise 4(D) Bounds on Probabilities Tchebycheff Inequality Bienayme’s Inequality Schwartz Inequality Cauchy-Schwartz Inequality Worked Examples 4(E) Exercise 4(E) Convergence Concepts and Central Limit Theorem Central Limit Theorem (Liapounoff’s Form) Central Limit Theorem (Lindeberg–Levy’s Form) Worked Examples 4(F) Exercise 4(F) Answers 5. Some Special Probability Distributions Introduction Special Discrete Distributions Mean and Variance of the Binomial Distribution Recurrence Formula for the Central Moments of the Binomial Distribution Poisson Distribution as Limiting Form of Binomial Distribution Mean and Variance of Poisson Distribution Mean and Variance of Geometric Distribution Mean and Variance of Hypergeometric Distribution Binomial Distribution as Limiting Form of Hypergeometric Distribution Worked Examples 5(A) Exercise 5(A) Special Continuous Distributions Moments of the Uniform Distribution U (a, b) Mean and Variance of the Exponential Distribution Memoryless Property of the Exponential Distribution Mean and Variance of Erlang Distribution Reproductive Property of Gamma Distribution Relation Between the Distribution Functions (cdf) of the Erlang Distribution with l = 1 (or Simple Gamma Distribution) and (Poisson Distribution) Density Function of the Weibull Distribution Mean and Variance of the Weibull Distribution Standard Normal Distribution Normal Probability Curve Properties of the Normal Distribution N(m, s) Importance of Normal Distribution Worked Examples 5(B) Exercise 5(B) Answers 6. Random Processes Classification of Random Processes Methods of Description of a Random Process Special Classes of Random Processes Average Values of Random Processes Stationarity Example of an SSS Process Analytical Representation of a Random Process Worked Examples 6(A) Exercise 6(A) Autocorrelation Function and its Properties Properties of R(t) Cross-Correlation Function and Its Properties Properties Ergodicity Mean-Ergodic Process Mean-Ergodic Theorem Correlation Ergodic Process Distribution Ergodic Process Worked Examples 6(B) Exercise 6(B) Power Spectral Density Function Properties of Power Spectral Density Function System in the Form of Convolution Unit Impulse Response of the System Properties Worked Examples 6(C) Exercise 6(C) Answers 7. Special Random Process Definition of a Gaussian Process Processes Depending on Stationary Gaussian Process Two Important Results Band Pass Process (Signal) Narrow-Band Gaussian Process Quadrature Representation of a WSS Process Noise in Communication Systems Thermal Noise Filters Worked Examples 7(A) Exercise 7(A) Poisson Process Probability Law for the Poisson Process {x(t)} Second-Order Probability Function of a Homogeneous Poisson Process Mean and Autocorrelation of the Poisson Process Properties of Poisson Process Worked Examples 7(B) Exercise 7(B) Markov Process Definition of a Markov Chain Chapman–Kolmogorov Theorem Classification of States of a Markov Chain Worked Examples 7(C) Exercise 7(C) Answers 8. Tests of Hypotheses Parameters and Statistics Sampling Distribution Estimation and Testing of Hypotheses Tests of Hypotheses and Tests of Significance Critical Region and Level of Significance Errors in Testing of Hypotheses One-Tailed and Two-Tailed Tests Critical Values or Significant Values Procedure for Testing of Hypothesis Interval Estimation of Population Parameters Tests of Significance for Large Samples Worked Examples 8(A) Exercise 8(A) Tests of Significance for Small Samples Student’s t-Distribution Properties of t-Distribution Uses of t-Distribution Critical Values of t and the t-Table Snedecor’s F-Distribution Properties of the F-Distribution Use of F-Distribution Worked Examples 8(B) Exercise 8(B) Chi-Square Distribution Properties of c2-Distribution Uses of c2-Distribution c2-Test of Goodness of Fit Conditions for the Validity of c2-Test c2-Test of Independence of Attributes Worked Examples 8(C) Exercise 8(C) Answers 9. Queueing Theory Symbolic Representation of a Queueing Model Difference Equations Related to Poisson Queue Systems Values of P0 and Pn for Poisson Queue Systems Characteristics of Infinite Capacity, Single Server Poisson Queue Model I [M/M/1): (∞/FIFO) model], when ln = l and mn = m (l < m) Relations Among E(Ns), E(Nq), E(Ws) and E(Wq) Characteristics of Infinite Capacity, Multiple Server Poisson Queue Model II [M/M/s): (∞/FIFO) model], When ln = l for all n(l < sm) Characteristics of Finite Capacity, Single Server Poisson Queue Model III [(M/M/1): (k/FIFO) Model] Characteristics of Finite Queue, Multiple Server Poisson Queue Model IV [(M/M/s): (k/FIFO) Model] Worked Examples 9 Exercise 9 Answers 10. Design of Experiments Aim of the Design of Experiments Some Basic Designs of Experiment Comparison of RBD and LSD Worked Examples 10 Exercise 10 Answers Appendix: Important Formulae Index