دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 1st Edition
نویسندگان: Jim Albert and Jingchen Hu
سری: Chapman & Hall/CRC Texts in Statistical Science
ISBN (شابک) : 9781138492561
ناشر: CRC Press
سال نشر: 2020
تعداد صفحات: 621
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 5 مگابایت
در صورت تبدیل فایل کتاب Probability and Bayesian Modeling به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب احتمال و مدلسازی بیزی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Probability: A Measurement of Uncertainty Introduction The Classical View of a Probability The Frequency View of a Probability The Subjective View of a Probability The Sample Space Assigning Probabilities Events and Event Operations The Three Probability Axioms The Complement and Addition Properties Exercises Counting Methods Introduction: Rolling Dice, Yahtzee, and Roulette Equally Likely Outcomes The Multiplication Counting Rule Permutations Combinations Arrangements of Non-Distinct Objects Playing Yahtzee Exercises Conditional Probability Introduction: The Three Card Problem In Everyday Life In a Two-Way Table Definition and the Multiplication Rule The Multiplication Rule Under Independence Learning Using Bayes\' Rule R Example: Learning About a Spinner Exercises Discrete Distributions Introduction: The Hat Check Problem Random Variable and Probability Distribution Summarizing a Probability Distribution Standard Deviation of a Probability Distribution Coin-Tossing Distributions Binomial probabilities Binomial computations Mean and standard deviation of a Binomial Negative Binomial Experiments Exercises Continuous Distributions Introduction: A Baseball Spinner Game The Uniform Distribution Probability Density: Waiting for a Bus The Cumulative Distribution Function Summarizing a Continuous Random Variable Normal Distribution Binomial Probabilities and the Normal Curve Sampling Distribution of the Mean Exercises Joint Probability Distributions Introduction Joint Probability Mass Function: Sampling From a Box Multinomial Experiments Joint Density Functions Independence and Measuring Association Flipping a Random Coin: The Beta-Binomial Distribution Bivariate Normal Distribution Exercises Learning About a Binomial Probability Introduction: Thinking About a Proportion Subjectively Bayesian Inference with Discrete Priors Example: students\' dining preference Discrete prior distributions for proportion p Likelihood of proportion p Posterior distribution for proportion p Inference: students\' dining preference Discussion: using a discrete prior Continuous Priors The Beta distribution and probabilities Choosing a Beta density curve to represent prior opinion Updating the Beta Prior Bayes\' rule calculation From Beta prior to Beta posterior: conjugate priors Bayesian Inferences with Continuous Priors Bayesian hypothesis testing Bayesian credible intervals Bayesian prediction Predictive Checking Exercises Modeling Measurement and Count Data Introduction Modeling Measurements Examples The general approach Outline of chapter Bayesian Inference with Discrete Priors Example: Roger Federer\'s time-to-serve Simplification of the likelihood Inference: Federer\'s time-to-serve Continuous Priors The Normal prior for mean _ Choosing a Normal prior Updating the Normal Prior Introduction A quick peak at the update procedure Bayes\' rule calculation Conjugate Normal prior Bayesian Inferences for Continuous Normal Mean Bayesian hypothesis testing and credible interval Bayesian prediction Posterior Predictive Checking Modeling Count Data Examples The Poisson distribution Bayesian inferences Case study: Learning about website counts Exercises Simulation by Markov Chain Monte Carlo Introduction The Bayesian computation problem Choosing a prior The two-parameter Normal problem Overview of the chapter Markov Chains Definition Some properties Simulating a Markov chain The Metropolis Algorithm Example: Walking on a number line The general algorithm A general function for the Metropolis algorithm Example: Cauchy-Normal problem Choice of starting value and proposal region Collecting the simulated draws Gibbs Sampling Bivariate discrete distribution Beta-Binomial sampling Normal sampling { both parameters unknown MCMC Inputs and Diagnostics Burn-in, starting values, and multiple chains Diagnostics Graphs and summaries Using JAGS Normal sampling model Multiple chains Posterior predictive checking Comparing two proportions Exercises Bayesian Hierarchical Modeling Introduction Observations in groups Example: standardized test scores Separate estimates? Combined estimates? A two-stage prior leading to compromise estimates Hierarchical Normal Modeling Example: ratings of animation movies A hierarchical Normal model with random _ Inference through MCMC Hierarchical Beta-Binomial Modeling Example: Deaths after heart attack A hierarchical Beta-Binomial model Inference through MCMC Exercises Simple Linear Regression Introduction Example: Prices and Areas of House Sales A Simple Linear Regression Model A Weakly Informative Prior Posterior Analysis Inference through MCMC Bayesian Inferences with Simple Linear Regression Simulate fits from the regression model Learning about the expected response Prediction of future response Posterior predictive model checking Informative Prior Standardization Prior distributions Posterior Analysis A Conditional Means Prior Exercises Bayesian Multiple Regression and Logistic Models Introduction Bayesian Multiple Linear Regression Example: expenditures of US households A multiple linear regression model Weakly informative priors and inference through MCMC Prediction Comparing Regression Models Bayesian Logistic Regression Example: US women labor participation A logistic regression model Conditional means priors and inference through MCMC Prediction Exercises Case Studies Introduction Federalist Papers Study Introduction Data on word use Poisson density sampling Negative Binomial sampling Comparison of rates for two authors Which words distinguish the two authors? Career Trajectories Introduction Measuring hitting performance in baseball A hitter\'s career trajectory Estimating a single trajectory Estimating many trajectories by a hierarchical model Latent Class Modeling Two classes of test takers A latent class model with two classes Disputed authorship of the Federalist Papers Exercises Appendix Appendix A: The constant in the Beta posterior Appendix B: The posterior predictive distribution Appendix C: Comparing Bayesian models