دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Pappu Kousalya
سری:
ISBN (شابک) : 9788131774526
ناشر: Pearson Education
سال نشر: 2013
تعداد صفحات: 593
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 36 مگابایت
در صورت تبدیل فایل کتاب Probability, Statistics and Random Processes به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب احتمالات ، آمار و فرآیندهای تصادفی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Cover Contents Preface Acknowledgements Chapter 1: Probability Introduction 1.1 Elementary Concepts of Set Theory 1.2 Permutations and Combinations 1.3 Introduction of Probability 1.4 Axioms of Probability 1.5 Some Elementary Results 1.6 Conditional Probability 1.7 Theorem of Total Probability 1.8 Baye’s Theorem Definitions at a Glance Formulae at a Glance Objective Type Questions Chapter 2: Random Variables (Discrete and Continuous) Introduction 2.1 Random Variable 2.2 Probability Mass Function (PMF) 2.3 Probability Density Function (PDF) 2.4 Joint Probability Distributions 2.5 Joint Density Function F(X, Y) 2.6 Stochastic Independence 2.7 Transformation of One-Dimensional Random Variable 2.8 Transformation of Two-Dimensional Random Variable Definitions at a Glance Formulae at a Glance Objective Type Questions Chapter 3: Mathematical Expectation Introduction 3.1 Mathematical Expectation 3.2 Variance 3.3 Expectation of a Function of Random Variables 3.4 Variance for Joint Distributions 3.5 Covariance 3.6 Conditional Expectation 3.7 Chebychev’s Inequality 3.8 Moments 3.9 Moment Generating Function 3.10 Characteristic Function Definitions at a Glance Formulae at a Glance Objective Type Questions Chapter 4: Standard Discrete Distributions Introduction 4.1 Binomial Distribution 4.2 Poisson Distribution 4.3 Negative Binomial Distribution 4.4 Geometric Distribution 4.5 Hyper Geometric Distribution 4.6 Uniform Distribution Definitions at a Glance Formulae at a Glance Objective Type Questions Chapter 5: Standard Continuous Distributions Introduction 5.1 Normal Distribution 5.2 Exponential Distribution 5.3 Gamma Distribution 5.4 Weibull Distribution 5.5 Central Limit Theorem Definitions at a Glance Formulae at a Glance Objective Type Questions Chapter 6: Sampling Theory and Distribution Introduction 6.1 Some Definitions 6.2 Types of Sampling 6.3 Advantages of Sampling 6.4 Sampling Distribution of a Statistic 6.5 Standard Error 6.6 Importance of Standard Error 6.7 Sampling from Normal and Non-Normal Populations 6.8 Finite Population Correction (FPC) Factor 6.9 Sampling Distribution of Means 6.10 When Population Variance is Unknown 6.11 Sampling Distribution of the Difference between Two Means 6.12 Sampling Distribution of Variance 6.13 The Chi-Square Distribution 6.14 The Student’s t-Distribution 6.15 F-Distribution Definitions at a Glance Formulae at a Glance Objective Type Questions Chapter 7: Testing of Hypothesis (Large Samples) Introduction 7.1 Statistical Hypothesis 7.2 Tests of Significance 7.3 Some Important Definitions 7.4 Steps Involved in Testing of Hypothesis 7.5 Tests of Significance Definitions at a Glance Formulae at a Glance Objective Type Questions Chapter 8: Test of Hypothesis (Small Samples) Introduction 8.1 Student’s t-Distribution 8.2 Critical Values of t 8.3 t-Test for Single Mean 8.4 t-Test for Difference of Means 8.5 Paired t-Test for Difference of Means 8.6 Snedecor’s F-Distribution 8.7 Chi-Square Distribution 8.8 Test for Independence of Attributes Definitions at a Glance Formulae at a Glance Objective Type Questions Chapter 9: Estimation Introduction 9.1 Point Estimation 9.2 Characteristics of Estimators 9.3 Interval Estimation 9.4 Confidence Interval 9.5 Some Results 9.6 Confidence Interval for Difference between Two Means (Known Variances) 9.7 Confidence Interval for Difference between Two Means (Unknown Variances) 9.8 Confidence Interval for Difference of Means (Unknown and Unequal Variances) 9.9 Confidence Interval for Difference between Means for Paired Observations 9.10 Confidence Interval for Estimating the Variance 9.11 Confidence Interval for Estimating the Ratio of Two Variances 9.12 Bayesian Estimation Definitions at a Glance Formulae at a Glance Objective Type Questions Chapter 10: Curve Fitting Introduction 10.1 The Method of Least Squares 10.2 Fitting of a Straight Line 10.3 Fitting of a Second Degree Parabola 10.4 Fitting of Exponential Curve and Power Curve Definitions at a Glance Formulae at a Glance Objective Type Questions Chapter 11: Correlation Introduction 11.1 Types of Correlation 11.2 Methods of Correlation 11.3 Properties of Correlation Coefficient 11.4 Coefficient of Correlation for Grouped Data 11.5 Rank Correlation 11.6 Limitations of Spearman’s Correlation Coefficient Method 11.7 Tied Ranks 11.8 Concurrent Deviations Method Definitions at a Glance Formulae at a Glance Objective Type Questions Chapter 12: Regression 12.1 Regression 12.2 Lines of Regression 12.3 Regression Coefficients 12.4 Difference between Regression and Correlation Analysis 12.5 Angle between Two Lines of Regression 12.6 Standard Error of Estimate 12.7 Limitations of Regression Analysis 12.8 Regression Curves Definitions at a Glance Formulae at a Glance Objective Type Questions Chapter 13: Queuing Theory Introduction 13.1 Elements of a Queuing Model 13.2 Distribution of Inter-Arrival Time 13.3 Distribution of Service Time 13.4 Queuing Process 13.5 Transient State and Steady State 13.6 Some Notations 13.7 Probability Distributions in Queuing System 13.8 Pure Birth Process 13.9 Pure Death Process 13.10 Classification of Queuing Models:(Single Server Queuing Models) 13.11 Multi-Server Queuing Models Definitions at a Glance Formulae at a Glance Objective Type Questions Chapter 14: Design of Experiments Introduction 14.1 Assumptions of Analysis of Variance 14.2 One-Way Classification 14.3 The Analysis from Decomposition of the Individual Observations 14.4 Two-Way Classification 14.5 Completely Randomized Design (CRD) 14.6 Latin Square Design (LSD) 14.7 Randomized Block Design (RBD) Definitions at a Glance Formulae at a Glance Objective Type Questions Chapter 15: Random Process Introduction 15.1 Classification of Random Processes 15.2 Stationarity 15.3 Second Order Stationary Process 15.4 Wide Sense Stationary Process 15.5 Cross Correlation Function 15.6 Statistical Averages 15.7 Time Averages 15.8 Statistical Independence 15.9 Ergodic Random Process 15.10 Mean-Ergodic Theorem 15.11 Correlation Ergodic Process 15.12 Correlation Functions 15.13 Covariance Functions 15.14 Spectral Representation 15.15 Discrete Time Processes 15.16 Discrete Time Sequences 15.17 Some Noise Definitions 15.18 Types of Noise Definitions at a Glance Formulae at a Glance Objective Type Questions Chapter 16: Advanced Random Process Introduction 16.1 Poisson Process 16.2 Mean and Auto Correlation of the Poisson Process 16.3 Markov Process 16.4 Chapman-Kolmogorov Theorem 16.5 Definitions in Markov Chain 16.6 Application to the Theory of Queues 16.7 Random Walk 16.8 Gaussian Process 16.9 Band Pass Process 16.10 Narrow Band Gaussian Process 16.11 Band Limited Process Definitions at a Glance Formulae at a Glance Objective Type Questions Appendix A Appendix B Appendix C Appendix D Index