دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Reinout Heijungs
سری:
ISBN (شابک) : 9783031493164, 1402006721
ناشر: Springer
سال نشر: 2024
تعداد صفحات: 1171
[1159]
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 44 Mb
در صورت تبدیل فایل کتاب Probability, Statistics and Life Cycle Assessment به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب احتمال، آمار و ارزیابی چرخه زندگی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب درسی استفاده از تحلیل عدم قطعیت و تحلیل حساسیت در ارزیابی چرخه حیات محیطی (LCA) را مورد بحث قرار می دهد. این موضوعی است که مورد توجه بسیاری از مجلات، از جمله مجله پیشرو (اسپرینگر) بین المللی ارزیابی چرخه حیات قرار گرفته است. علیرغم اهمیت آن، هیچ کتاب درسی منسجمی وجود ندارد که پیشرفت های انجام شده در 20 سال گذشته را خلاصه کند. این کتاب سعی دارد این شکاف را پر کند. مخاطبان آن شاغلین (حرفه ای و دانشگاهی) LCA، معلمان و دکترا هستند. دانش آموزان این یک نمای کلی بسیار گسترده از این زمینه ارائه می دهد: نظریه احتمال، آمار توصیفی، آمار استنباطی، تجزیه و تحلیل خطا، تجزیه و تحلیل حساسیت، نظریه تصمیم و غیره، همه در رابطه با LCA. تلاش زیادی برای ارائه یک نمای کلی متوازن، با اصطلاحات و نمادهای ریاضی یکنواخت انجام شده است.
This textbook discusses the use of uncertainty analysis and sensitivity analysis in environmental life cycle assessment (LCA). This is a topic which has received a lot of attention by journals, including the leading (Springer) International Journal of Life Cycle Assessment. Despite its importance, no coherent textbook exists that summarizes the progress that has been made in the last 20 years. This book attempts to fill that gap. Its audience is practitioners (professional and academic) of LCA, teachers, and Ph.D. students. It gives a very broad overview of the field: probability theory, descriptive statistics, inferential statistics, error analysis, sensitivity analysis, decision theory, etc., all in relation to LCA. Much effort has been taken to give a balanced overview, with a uniform terminology and mathematical notation.
Preface References Contents 1 Introduction 1.1 Life Cycle Assessment 1.2 Uncertainty in LCA 1.3 Sensitivity in LCA 1.4 Uncertainty and Sensitivity in LCA: Past, Present and Future 1.4.1 Early Recommended Practice 1.4.2 Developments 1.4.3 Application by Case Studies 1.4.4 Review Papers 1.4.5 Current Recommended Practice 1.4.6 Current Practice 1.4.7 The Future 1.4.8 The Role of Software 1.4.9 Fixing the Errors 1.4.10 This Book 1.5 Terminology and Notation 1.6 Outline References Part I A Primer 2 Probability 1: Basics 2.1 Probability and Random Variables 2.1.1 Probability Defined 2.1.2 Random Variables 2.1.3 Infinite and Finite Populations 2.2 Probability Distributions and Probability Distribution Functions 2.2.1 Probability Distributions 2.2.2 Discrete Probability Distribution Functions 2.2.3 Continuous Probability Distribution Functions 2.3 Cumulative Distribution Functions 2.3.1 Discrete Cumulative Distribution Functions 2.3.2 Continuous Cumulative Distribution Functions 2.3.3 Inverse Cumulative Distribution Functions 2.3.4 Complementary Cumulative Distribution Functions 2.4 Probability Distributions, Dimensions and Units 2.4.1 A Brief Digression on Dimensions and Units 2.4.2 Dimensions and Units for Probability Theory 2.5 Moments and Other Functions of a Distribution 2.5.1 Expected Value 2.5.2 Variance 2.5.3 Raw, Central, Higher and Standardized Moments 2.5.4 Other Functions of a Distribution 2.5.5 Chebyshev's Inequality 2.6 Model Distributions 2.6.1 The Binomial and Bernoulli Distributions 2.6.2 The Multinomial Distribution 2.6.3 The Normal Distribution 2.6.4 The Standard Normal Distribution, the Standardization Procedure and the Interpercentile Interval 2.6.5 The Lognormal Distribution 2.6.6 The Two Triangular Distributions 2.6.7 The Beta Distribution 2.6.8 The Gamma Distribution 2.6.9 The PERT Distribution 2.6.10 The t-distribution 2.6.11 The chi2-distribution 2.6.12 The F-distribution 2.6.13 The Two Uniform Distributions 2.6.14 Summary of Main Continuous Probability Distributions 2.6.15 A Few Relationships Between Probability Distributions 2.6.16 Other Distributions 2.7 More Than One Random Variable 2.7.1 Probabilities Relating to Multiple Events 2.7.2 Combining Random Variables: The Sum 2.7.3 Dependence and Covariance 2.7.4 Comparing Two Random Variables 2.7.5 The Correlation Between Two Random Variables 2.7.6 Simple Regression 2.7.7 Multiple Regression 2.7.8 Bivariate Probability Distributions and Copulas 2.7.9 Multivariate Probability Distributions 2.7.10 Sums of Several Random Variables 2.7.11 Functions of Probability Distributions References 3 Probability 2: Alternatives 3.1 Alternative Interpretations of Probability 3.1.1 Bayesianism 3.1.2 The Classical View 3.1.3 Other Extreme Points of View 3.1.4 Imprecise Probability 3.1.5 Second-Order Uncertainty 3.1.6 Where is the Stochastic Process? 3.2 Alternatives to Probability 3.2.1 Possibility Theory and Fuzzy Numbers 3.2.2 Dempster–Shafer Theory 3.2.3 Rough Sets 3.2.4 Grey Relational Analysis 3.2.5 Set Pair Analysis 3.2.6 Interval Arithmetic 3.2.7 Information Theory 3.3 Combination of Paradigms References 4 Statistics 1: Descriptive 4.1 Data 4.1.1 The Data Matrix 4.1.2 Some Issues of Notation 4.1.3 Data and Summaries 4.1.4 Data and Samples 4.1.5 Statistics and Their Symbols 4.1.6 Order Statistics and Ranks 4.2 Measures of Centrality 4.2.1 The Mean 4.2.2 Other Measures of Central Tendency 4.3 Measures of Dispersion 4.3.1 The Absolute Deviation 4.3.2 The Variance and the Standard Deviation 4.3.3 Other Measures of Dispersion 4.4 Other Univariate Descriptive Statistics and Visualizations 4.4.1 The Five Quartiles and the Box Plot 4.4.2 The Empirical Distribution Function 4.4.3 Kernel Density Estimation 4.4.4 Histogram, Frequency Polygon and Ogive 4.4.5 The Q-Q Plot and P-P Plot 4.4.6 Standardized Scores and Other Transformations 4.4.7 Measures of Shape 4.5 Univariate Statistics for Categorical Data 4.5.1 Frequencies, Proportions and Odds 4.5.2 Bar Charts and Pie Charts 4.5.3 The Case of k=2 Levels 4.5.4 Bar Charts and Pie Charts for Numerical Data 4.6 Bivariate and Multivariate Descriptive Statistics 4.6.1 Dependent and Independent Variables 4.6.2 Two Numerical Variables 4.6.3 One Numerical and One Categorical Variable 4.6.4 Two Categorical Variables 4.6.5 Multivariate Analysis References 5 Statistics 2: Inferential 5.1 The Estimation Problem 5.1.1 Estimators, Estimates and Estimands 5.1.2 Estimation Principles 5.1.3 The Distribution of Estimates 5.2 The Central Limit Theorem 5.2.1 An Introduction to the Central Limit Theorem 5.2.2 Statement of the Central Limit Theorem 5.3 The Sampling Distribution 5.3.1 The Sampling Distribution of the Mean 5.3.2 The Sampling Distribution of the Mean in Case sigma is Unknown 5.3.3 The Sampling Distribution of the Standard Deviation 5.3.4 The Sampling Distribution of the Proportion 5.3.5 Other Sampling Distributions 5.4 Point Estimates and the Standard Error of the Estimate 5.4.1 Point Estimates 5.4.2 The Standard Error of the Estimate 5.4.3 The Standard Error of the Mean 5.4.4 The Standard Error of Other Statistics 5.4.5 The Relative Standard Error 5.5 Confidence Intervals 5.5.1 The Idea of a Confidence Interval 5.5.2 Interpretation of a Confidence Interval 5.5.3 The Confidence Interval of the Mean 5.5.4 The Confidence Interval of the Mean in Case sigma is Unknown 5.5.5 The Confidence Interval of the Variance 5.5.6 The Confidence Interval of the Standard Deviation 5.5.7 The Confidence Interval of the Proportion 5.5.8 Confidence Intervals of the Correlation Coefficient 5.5.9 Confidence Intervals of the Regression Coefficient 5.5.10 Confidence Intervals of Other Statistics 5.6 Estimating Probability Distribution Functions 5.6.1 Selecting an Appropriate Probability Distribution Functions 5.6.2 Tails or Central Part? 5.6.3 Estimating Parameters of a Probability Distribution Functions 5.7 Hypothesis Tests 5.7.1 Hypothesis Tests in Science 5.7.2 Null and Alternative Hypothesis, One-Sided and Two-Sided Hypothesis 5.7.3 The Test Statistic 5.7.4 Tails and Sides 5.7.5 Significance Level, Critical Region, Critical Value, and Null Distribution 5.7.6 The Realized Value of the Standardized Test Statistic 5.7.7 A Worked Example 5.7.8 The Statistical Decision 5.7.9 The p-Value 5.7.10 The Significance Level alpha and Type I Errors 5.7.11 Type II Errors and Power 5.7.12 Asterisks (*, **, ***) and Other Conventions to Denote Significance 5.7.13 Further Requirements and Assumptions 5.7.14 Non-parametric Tests 5.7.15 Bootstrap Tests 5.7.16 A Catalogue of Null Hypothesis Significance Tests 5.8 Univariate Hypothesis Tests 5.8.1 Hypothesis Tests for the Mean (mu) 5.8.2 Hypothesis Tests for the Median (nu) 5.8.3 Hypothesis Tests for the Standard Deviation (sigma) and the Variance (sigma2) 5.8.4 Hypothesis Tests for the Proportion (pi) 5.8.5 Goodness-of-Fit Tests 5.8.6 Other Hypothesis Tests 5.9 Bivariate Hypothesis Tests 5.9.1 Independent Samples Tests 5.9.2 Dependent Samples Tests 5.9.3 Comparing Two Distributions 5.9.4 The Association Between Two Numerical Variables 5.9.5 The Association Between Two Categorical Variables 5.10 Multivariate Hypotheses Tests 5.10.1 The Problem of Multiple Testing 5.10.2 Comparing Several Numerical Variables 5.10.3 Hypothesis Tests for Multiple Regression Analysis 5.10.4 Multi-way Analyses 5.10.5 Comparing Several Categorical Variables 5.10.6 Other Multivariate Methods References 6 LCA 6.1 The Mathematical Model for LCA 6.1.1 The Mathematical Structure of a Model 6.1.2 LCA Without Maths? 6.1.3 Parameters, Arguments, Inputs and Outputs 6.1.4 Black Box or Not? 6.1.5 Goal and Scope Definition 6.1.6 Inventory Analysis 6.1.7 Impact Assessment 6.1.8 Interpretation 6.2 More Refined LCA 6.2.1 Regional/spatial Differentiation 6.2.2 Temporal/dynamic Differentiation 6.3 Alternative Methods to Calculate LCA Results 6.3.1 Matrix-Based LCI Versus Other Approaches 6.3.2 Matrix-Inversion-Based LCI Versus Other Matrix-Based Approaches 6.3.3 Process-Based LCI Versus IO-Based LCI 6.3.4 Matrix-Based LCIA 6.4 Data in LCA 6.4.1 Types of Data 6.4.2 Data for LCI 6.4.3 Characterization Data 6.4.4 Linear and Non-linear LCI and LCIA 6.4.5 Data Defined by Scenarios 6.5 Derivatives of the Mathematical Model 6.5.1 Derivatives at the Inventory Level 6.5.2 Derivatives at the Characterization Level 6.5.3 Derivatives at the Normalization Level 6.5.4 Derivatives at the Weighting Level 6.5.5 Higher Order Derivatives 6.5.6 Numerical Derivatives 6.6 Dealing with Uncertainty and Sensitivity in LCA 6.6.1 What Are the Issues? 6.6.2 Frameworks 6.6.3 Estimation of Probability Distributions 6.6.4 Software and Databases for Including Uncertainty and Sensitivity in LCA 6.6.5 Representing Statistical Information in LCA Databases 6.6.6 From Format to Calculations 6.6.7 Probability Distributions in LCA 6.6.8 From Statistics to Decisions 6.7 Uncertainty and Sensitivity in IOA and Related Models 6.7.1 The Case of IOA 6.7.2 The Case of EIOA and IO-Based LCA 6.7.3 Is IO-Based LCA More Precise Than Process-Based LCA? 6.8 Visualization in LCA 6.8.1 Graphs for Visualizing Uncertainty 6.8.2 Graphs for Visualizing Sensitivity 6.8.3 Miscellaneous Graphs References 7 Error and Quality 7.1 Measurements and Their Errors 7.1.1 Terminology of Measurements 7.1.2 Terminology of Errors 7.1.3 Error and Variability 7.1.4 Measurement Errors Across the Sciences 7.1.5 Numerical and Categorical Measurements 7.1.6 What is a Measurement? 7.1.7 Models and Their Errors 7.1.8 Alternative Categorizations of Errors 7.1.9 Uncertainty > Error 7.2 Quantification of Error 7.2.1 Quantification of Random Error 7.2.2 Quantification of Systematic Error 7.2.3 Quantification of Total Error 7.3 Error Propagation 7.3.1 Notation 7.3.2 The Distribution of the Output Error 7.3.3 Methods for Error Propagation 7.4 Gaussian Error Propagation 7.4.1 First-Order Gaussian Error Propagation 7.4.2 Proof of the Gaussian Error Propagation Formula 7.4.3 Second-Order Correction 7.4.4 Larger Errors 7.4.5 Correlated Errors 7.4.6 Estimating the Partial Derivatives 7.5 Sampling-Based Error Propagation 7.5.1 Monte Carlo for Error Propagation 7.5.2 More Refined Sampling Methods 7.5.3 The Number of Replications for Sampling Approaches 7.6 Some Other Techniques for Error Propagation 7.6.1 Naive Numerical Error Propagation 7.6.2 Error Propagation Using Fuzzy Numbers 7.6.3 Error Propagation Using Interval Arithmetic 7.6.4 Error Propagation Using Scenarios 7.6.5 Miscellaneous and Combined Methods 7.7 Comparisons of Different Propagation Methods 7.7.1 Comparison of Conclusions 7.7.2 Comparison of Requirements 7.7.3 Combining the Strengths 7.8 Suspicious and Missing Measurements 7.8.1 Detecting Suspicious Measurements 7.8.2 Managing Suspicious Measurements 7.8.3 Missing Observations and Data Gaps 7.8.4 Data Estimation 7.8.5 Data Reconciliation 7.8.6 Estimation of Systematic Error 7.8.7 Outliers, Once More 7.8.8 The Role of Suspicious and Missing Measurements in LCA 7.9 Truncation, Aggregation and Approximation Errors 7.9.1 Cut-off 7.9.2 Truncation Error 7.9.3 Streamlining, LCA for Design and Prospective LCA 7.9.4 Aggregation Error 7.10 Other Types of Error 7.10.1 Sampling Error 7.10.2 Errors in Computation 7.10.3 Power Series Expansions 7.10.4 Database Errors 7.10.5 Software Implementation Errors 7.10.6 Model Errors 7.10.7 Trade-off of Errors 7.11 Validity, Reliability, Repeatability and Reproducibility 7.11.1 Validity and Reliability in the Social Sciences 7.11.2 Repeatability, Reproducibility and Reliability in the Quality Management and Production Engineering 7.11.3 Data Quality in LCA 7.12 Significant Digits 7.13 Data Quality Indicators 7.13.1 The NUSAP Scheme and the Pedigree 7.13.2 DQIs in LCA 7.13.3 Conversion of DQIs into Overall Data Quality Scores 7.13.4 Conversion of DQIs into Probability Distributions 7.13.5 Conversion of DQIs into Possibilistic Information 7.13.6 System-Wide DQIs 7.13.7 The `Basic Uncertainty' 7.13.8 Assessment Factors References 8 Uncertainty, Risk and Decisions 8.1 Decisions 8.1.1 The Decision Matrix 8.1.2 Expected Value 8.1.3 Expected Utility 8.1.4 Value of Information 8.2 Uncertainty 8.2.1 Uncertainty in Daily Life and Society 8.2.2 Uncertainty in Science and Engineering 8.2.3 Uncertainty in Policy and the Post-normal Science Movement 8.2.4 Uncertainty = Error + Variability 8.2.5 Is Uncertainty Quantifiable? 8.2.6 Types of Uncertainty 8.3 Modeling Uncertainty 8.3.1 Uncertainty = Error + Variability: A Closer Look 8.3.2 Combining Variability and Measurement Error 8.3.3 Inferring the Underlying Measurand 8.3.4 Non-normal Distributions 8.4 Risk 8.4.1 What Is Risk? 8.4.2 Risk and Decisions 8.4.3 The Role of Risk in LCA 8.5 Multi-criteria Methods 8.5.1 Basics of Multi-criteria Decision Analysis 8.5.2 Multi-criteria Decision Analysis and Uncertainty 8.5.3 Use of Multi-criteria Decision Analysis in LCA 8.5.4 Use of Multi-criteria Decision Analysis in Uncertain LCA 8.6 Decisions in LCA 8.6.1 From Numbers to Decisions 8.6.2 Decision Situations and Application Areas 8.6.3 LCA as an Optimization Problem 8.7 Single-Product Decisions 8.7.1 Provision of Product Information 8.7.2 Benchmarking a Product 8.7.3 Benchmarking the Mean Product 8.7.4 Benchmarking `all' Products 8.7.5 Benchmarking a `Significant' Share of Products 8.7.6 The Problem of Defining Benchmarks 8.7.7 Product Improvement with a Contribution Analysis 8.7.8 Product Improvement with a Sensitivity Analysis 8.7.9 Product Improvement with Mathematical Optimization 8.8 Multi-product Decisions 8.8.1 Pairwise Comparisons 8.8.2 The Best Product Alternative 8.8.3 The Product Alternative with the Lowest Mean Impact 8.8.4 The Product Alternative with the Significantly Lowest Mean Impact—Two Alternatives 8.8.5 Dependent and Independent Comparisons 8.8.6 Issues with `Significance' 8.8.7 Effect Size 8.8.8 `Modified' Significance Tests 8.8.9 The Product Alternative with the Significantly Lowest Mean Impact—Three or More Alternatives 8.8.10 Medians Instead of Means 8.8.11 Ranking a Set of Product Alternatives 8.8.12 Rank-Based Procedures 8.8.13 Pareto Fronts and Dominated and Non-dominated Products 8.8.14 Overlap 8.8.15 Discernibility and the Comparison Indicator 8.8.16 Probabilities 8.8.17 A Tableau of Pairwise Comparisons 8.8.18 Multiple Products and Multiple Impacts 8.8.19 Other Types of LCA Research References 9 Sensitivity 9.1 Defining Sensitivity Analysis 9.1.1 Sensitivity Versus Uncertainty 9.1.2 Local Versus Global Sensitivity Analysis 9.1.3 One-at-a-Time Versus All-at-a-Time 9.1.4 OAT and LSA Are Not the Same, and Neither Are AAT and GSA Synonyms 9.1.5 Sensitivity, Uncertainty and Influence 9.1.6 Uncertainty Apportioning 9.1.7 Discrete Changes and Scenarios 9.1.8 Subdividing the Field 9.1.9 Nominal Value Versus Probability Distribution 9.1.10 Is Sensitivity Analysis Probabilistic? 9.1.11 A Note on Notation 9.1.12 Visualizing Sensitivity 9.1.13 Screening 9.2 Local Sensitivity Analysis, One-at-a-Time 9.2.1 The Basic Idea of LSA-OAT 9.2.2 Derivatives, Multipliers, the Gradient and the Jacobian Matrix 9.2.3 Non-linear Effects and the Second Derivative 9.2.4 Derivative-Based Measures of Sensitivity 9.2.5 Data Requirements for Local Sensitivity Analysis 9.2.6 The Choice of the Nominal Value 9.3 Local Sensitivity Analysis, All-at-a-Time 9.3.1 Two-at-a-Time 9.3.2 All-at-a-Time 9.4 Discrete Sensitivity Analysis 9.4.1 Sensitivity for Choices 9.4.2 Sensitivity for Changes in Discrete Variables 9.4.3 Sensitivity for Changes in Discretized Continuous Variables 9.4.4 Sensitivity for Arbitrary Changes 9.4.5 All-at-a-Time Choices: Scenarios 9.4.6 Visualizing DSA 9.5 Global Sensitivity Analysis, One-at-a-Time 9.5.1 Sensitivity Functions and Their Visualization 9.5.2 Numerical Indicators 9.5.3 Stability Setting 9.5.4 Reliability Theory 9.6 Global Sensitivity Analysis, All-at-a-Time 9.6.1 Scatter Plots, Correlation and Regression 9.6.2 Some Other Approaches 9.6.3 Discretized Continuous Variables: Factorial Design 9.6.4 Discretized, Two-at-a-Time: Visualization 9.6.5 Morris' Elementary Effects 9.6.6 Screening Methods 9.7 Uncertainty Apportioning 9.7.1 The Basic Idea of UA 9.7.2 Regression-Based UA 9.7.3 Variance-Based UA 9.7.4 Moment-Independent UA 9.7.5 Estimating Conditional Variances in Variance-Based UA 9.7.6 Probing the Input Space 9.7.7 Other Variations 9.7.8 When is a Contribution Large? 9.8 Computational Aspects 9.8.1 Change of One Element 9.8.2 Change of One Row or Column 9.8.3 Change of Several Rows or Columns 9.8.4 Change of a Block of a Partitioned Matrices References Part II A Critique 10 Statistical Concepts, Terminology and Notation 10.1 Parameters, `true' Values and `deterministic' Values 10.1.1 Parameter Uncertainty Does Not Exist 10.1.2 What If the Parameters of the Input Data Were Uncertain? 10.1.3 The Double Meaning of `parameter' 10.1.4 The `true' Value 10.1.5 Is the Central Value the `true' Value? 10.1.6 The Roles of Error and Variability 10.1.7 The `deterministic' Value 10.1.8 What Is the `deterministic' Value? 10.1.9 Deterministic Input Value Versus Deterministic Output Result 10.1.10 The Case of Non-sampling Methods 10.1.11 Do We Need a `deterministic' Value? Yes, But Let's Call it the `nominal' Value 10.2 The Use of Confidence Intervals 10.2.1 Statistical Intervals: Some Theory 10.2.2 A Short History of Confidence Intervals in LCA 10.2.3 Terminology Related to `confidence' 10.3 Uncertainty Factors 10.3.1 Qualitative Interpretations 10.3.2 Uncertainty Factors Related to the Geometric Standard Deviation 10.3.3 Uncertainty Factors Related to a Specific Probability Range 10.3.4 Uncertainty Factors that Change the Central Value 10.3.5 Unspecified or Unclear Uncertainty Factors and Other Variations 10.4 Means, Variances and Standard Deviations 10.4.1 The Many Faces of Means, Variances and Standard Deviations 10.4.2 Issues of Notation 10.4.3 Expected Values and Other Central Values 10.4.4 Standard Deviations and Other Measures of Dispersion 10.5 Hypotheses and Significance 10.5.1 Hypotheses Without a Hypothesis Test 10.5.2 Hypotheses with a Hypothesis Test 10.5.3 Significance Without a Hypothesis Test 10.5.4 Significance with a Hypothesis Test 10.5.5 Hypothesis Tests Without Significance 10.6 Correlation, Dependence and Regression 10.6.1 Correlation Versus Regression 10.6.2 Significant Correlations 10.6.3 Dependence and Association 10.6.4 Other Meanings of `dependence' 10.7 Numbers, Graphs and Notation 10.7.1 Numbers and Units 10.7.2 Graphs 10.7.3 The Use of x+-sigma 10.7.4 Mathematical Notation 10.8 Some Other Issues 10.8.1 Sensitivity Analysis 10.8.2 Misuse of Terms 10.8.3 The Role of the Central Limit Theorem 10.8.4 The Use of the t-Distribution for Input Variables 10.8.5 The Ostrich Phenomenon 10.8.6 More Curiosities 10.9 Conclusion References 11 The Lognormal Distribution in LCA 11.1 Parametrizations 11.1.1 Parametrization Ia: Abstract Definition 11.1.2 Parametrization Ib: Definition from an Underlying Normal Distribution 11.1.3 Parametrization IIa: Definition with Geometric Parameters 11.1.4 Parametrization IIb: Definition in Logarithmic Units 11.1.5 Relation Between the Different Forms 11.1.6 Other Definitions 11.1.7 Implementation in LCA Databases 11.2 Some Properties of the Lognormal Distribution 11.2.1 The Cumulative Distribution Function 11.2.2 Graphs of the pdf and cdf 11.2.3 Moments and Other Properties 11.2.4 Is the Median Equal to the Geometric Mean? 11.2.5 Interpercentile Intervals 11.2.6 Combining Lognormal Distributions 11.2.7 In Search of a `most representative' Value 11.3 Estimation of the Parameters of the Lognormal Distribution 11.3.1 Maximum Likelihood Estimation 11.3.2 Method of Moments Estimation 11.3.3 Example of Parameter Estimation 11.3.4 Other Estimation Methods 11.3.5 Lognormal Estimation in LCA 11.3.6 Confidence Intervals for the Parameters 11.4 Alleged Confidence Intervals, the Dispersion Factor … 11.4.1 Lognormal Distributions and `confidence intervals' in LCA 11.4.2 The Dispersion Factor 11.4.3 The Role of GSD2 11.4.4 Why Not Another Power of GSD? 11.5 The Issue of Dimensions and Units 11.5.1 Dimensions and the Normal Distribution 11.5.2 Units and the Normal Distribution 11.5.3 Dimensions and the Lognormal Distribution 11.5.4 Units and the Lognormal Distribution 11.5.5 Implications for Parameters 11.6 Variants of the Lognormal Distribution 11.6.1 The Lognormal Distribution for Negative Numbers 11.6.2 The 3-Parameter Lognormal Distribution 11.6.3 The 4-Parameter Lognormal Distribution 11.6.4 Other Variations 11.7 Comparison with the Beta Distribution 11.7.1 Comparison of Lognormal and Beta 11.7.2 Dimensions and Units for the Beta Distribution 11.8 Is the Lognormal Distribution a Natural Choice for LCA? 11.8.1 The Case of Input Data 11.8.2 The Case of Output Results 11.9 Conclusion References 12 The Quantitative Pedigree Approach 12.1 The NUSAP Scheme and the (Qualitative) Pedigree 12.2 The Pedigree in LCA 12.2.1 NUSAP or Pedigree? 12.2.2 Pedigree, Pedigree Matrix, or Pedigree Approach? 12.2.3 Weidema and Wesnæs (ch12Weidema1996) 12.2.4 Meier (ch12Meier1997) 12.2.5 Frischknecht et al. (ch12Frischknecht2004/ch12Frischknecht2005b/ch12Frischknecht2007a) 12.2.6 GHG Protocol (ch12GreenhouseGasProtocol2011) 12.2.7 Weidema et al. (ch12Weidema2013) 12.2.8 Muller et al. (ch12Muller2016a) and Ciroth et al. (ch12Ciroth2016) 12.2.9 Muller et al. (ch12Muller2016b) 12.2.10 Adoption by Others 12.3 Alternative Quantitative DQIs 12.3.1 Kennedy et al. (ch12Kennedy1996/ch12Kennedy1997) 12.3.2 Van den Berg et al. (ch12VanDenBerg1999) 12.3.3 Rousseaux et al. (ch12Rousseaux2001) 12.3.4 Ardente et al. (ch12Ardente2004) 12.3.5 Chen and Lee (ch12Chen2021b) 12.3.6 Zheng et al. (ch12Zheng2019) 12.3.7 Other Reviews and Modifications 12.4 Critical Observations 12.4.1 The Combination Rules 12.4.2 A Proof of the Addition Rule for Squared Geometric Standard Deviations—With a Few Side Notes 12.4.3 Adding GSD Unsquared? 12.4.4 The Role of Sample Size 12.4.5 What Is the Basic Uncertainty? 12.4.6 Comparison with Observed Data 12.4.7 Some Other Objections 12.5 The Quantitative Pedigree Approach in Practice 12.5.1 Use of the Quantitative Pedigree 12.5.2 Perception of the Quantitative Pedigree 12.6 Conclusion References 13 Statistical Analysis of Non-stochastic LCA 13.1 Univariate Analysis 13.2 Correlation and Regression Analysis 13.3 Multivariate Statistics and Machine Learning 13.3.1 Principal Component Analysis 13.3.2 Other Multivariate Methods 13.3.3 Machine Learning 13.4 Meta-analysis 13.4.1 What is Meta-analysis? 13.4.2 Meta-analysis in LCA 13.5 Conclusion References Part III A Guidance 14 Including Uncertainty and Sensitivity in LCA 14.1 The LCA Model Equations as a Basis for Uncertainty Modeling 14.1.1 A Concrete Example of phi(.) 14.1.2 The LCA Model as a Black Box 14.1.3 From Deterministic LCA to Probabilistic LCA 14.2 Towards a Guide for Including Uncertainty and Sensitivity 14.2.1 Elements of a Guide 14.2.2 Why a True Guide on Uncertainty and Sensitivity Is Not Feasible 14.2.3 A Guidance Document 14.3 Overall Guidance References 15 Guidance for Standard LCA 15.1 Uncertainty Analysis 15.1.1 Input Data and Choices in the Framework of LCA 15.1.2 Uncertain Data 15.1.3 Uncertainty Propagation 15.1.4 Non-comparative LCA 15.1.5 Comparative LCA 15.2 Sensitivity Analysis 15.2.1 Local Sensitivity Analysis, One-at-a-Time 15.2.2 Global Sensitivity Analysis, One-at-a-Time 15.2.3 Discrete Sensitivity Analysis 15.2.4 Global Sensitivity Analysis, All-at-a-Time 15.2.5 Uncertainty Apportioning References 16 Guidance for Special Types of LCA 16.1 Input–Output-Based LCA and Hybrid LCA 16.2 Attributional and Consequential LCA 16.3 Parametrized and Non-linear LCA 16.4 Agent-Based LCA 16.5 Fleet-Based LCA 16.6 Life Cycle Optimization 16.7 Other Pillars of Sustainability 16.7.1 Life Cycle Costing 16.7.2 Social Life Cycle Assessment 16.7.3 Environmental and Economic Aspects 16.7.4 All Three Pillars References Appendix A Symbols A.1 Abbreviations A.2 General Symbols and Conventions Appendix B Matrix Topics B.1 General Conventions and Symbols B.2 Abstract Vectors and Euclidean Vectors B.3 Transposition and Diagonalization B.4 Multiplication of Vectors and Matrices B.5 Matrix Inversion and the Determinant B.6 Systems of Linear Equations B.7 Vector and Matrix Norms B.8 Partitioned Matrices and the Vec-Operator Appendix C Special Functions C.1 The Exponential, Logarithmic and Logit Functions and the Fisher Transformation C.2 The Gamma, Beta and Error Functions C.3 The Binomial Coefficient C.4 The Floor, Ceiling, Sign, Heaviside and Indicator Functions and the Kronecker Delta References Subject Index