دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 1
نویسندگان: Jaeseok Choi
سری:
ISBN (شابک) : 9781119684138, 1119684137
ناشر: Wiley-IEEE Press
سال نشر: 2021
تعداد صفحات: 513
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 16 مگابایت
در صورت تبدیل فایل کتاب Probabilistic Power System Expansion Planning with Renewable Energy Resources and Energy Storage Systems (IEEE Press Series on Power and Energy Systems) به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب برنامه ریزی احتمالی گسترش سیستم قدرت با منابع انرژی تجدیدپذیر و سیستم های ذخیره انرژی (مجموعه مطبوعاتی IEEE در مورد سیستم های قدرت و انرژی) نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
پیدا کنید که چگونه تکنیک های مدرن برنامه ریزی پیچیده گسترش سیستم قدرت را با این منبع یک مرحله ای از دو متخصص در این زمینه شکل داده است
برنامهریزی احتمالی گسترش سیستم قدرت با منابع انرژی تجدیدپذیر و سیستمهای ذخیرهسازی انرژی مجموعه جامعی از رویکردهای نوآورانه را برای برنامهریزی احتمالی سیستمهای تولید و انتقال تحت عدم قطعیت ارائه میدهد. این کتاب شامل محاسبات انرژیهای تجدیدپذیر و ذخیرهسازی انرژی هنگام استفاده از تکنیکهای قابلیت اطمینان احتمالی و قطعی برای ارزیابی عملکرد سیستم از دیدگاه برنامهریزی توسعه بلندمدت است.
این کتاب که به دو بخش تقسیم میشود، ابتدا موضوعات مربوط به برنامهریزی توسعه نسل را با فصلهایی در مورد ارزیابی هزینه، روششناسی و بهینهسازی و موارد دیگر پوشش میدهد. بخش دوم و آخر اطلاعاتی در مورد برنامه ریزی توسعه سیستم انتقال، با فصل هایی در مورد محدودیت های قابلیت اطمینان، شبیه سازی احتمالی هزینه تولید و غیره ارائه می دهد.
برنامه ریزی توسعه سیستم قدرت احتمالی بهینه سازی و روش شناسی را در برنامه نویسی پویا، خطی و عدد صحیح مقایسه می کند و الگوریتم شاخه و کران را بررسی می کند. همراه با مطالعات موردی برای نشان دادن اینکه چگونه تکنیک های توصیف شده در داخل در مسائل پیچیده برنامه ریزی توسعه سیستم قدرت به کار گرفته شده اند، خوانندگان از این موارد لذت خواهند برد:
مناسب برای سیستم های قدرت و انرژی طراحان، برنامه ریزان، اپراتورها، مشاوران، مهندسان مجرب، توسعه دهندگان نرم افزار و محققان، برنامه ریزی احتمالی توسعه سیستم قدرت با منابع انرژی تجدیدپذیر و انرژی استو rage Systems همچنین جایگاهی را در کتابخانههای مهندسان مجربی که به طور مرتب با مشکلات بهینهسازی سروکار دارند، به دست خواهد آورد.
Discover how modern techniques have shaped complex power system expansion planning with this one-stop resource from two experts in the field
Probabilistic Power System Expansion Planning with Renewable Energy Resources and Energy Storage Systems delivers a comprehensive collection of innovative approaches to the probabilistic planning of generation and transmission systems under uncertainties. The book includes renewables and energy storage calculations when using probabilistic and deterministic reliability techniques to assess system performance from a long-term expansion planning viewpoint.
Divided into two sections, the book first covers topics related to Generation Expansion Planning, with chapters on cost assessment, methodology and optimization, and more. The second and final section provides information on Transmission System Expansion Planning, with chapters on reliability constraints, probabilistic production cost simulation, and more.
Probabilistic Power System Expansion Planning compares the optimization and methodology across dynamic, linear, and integer programming and explores the branch and bound algorithm. Along with case studies to demonstrate how the techniques described within have been applied in complex power system expansion planning problems, readers will enjoy:
Perfect for power and energy systems designers, planners, operators, consultants, practicing engineers, software developers, and researchers, Probabilistic Power System Expansion Planning with Renewable Energy Resources and Energy Storage Systems will also earn a place in the libraries of practicing engineers who regularly deal with optimization problems.
Cover Title Page Copyright Page Contents Author Biographies Preface Acknowledgments Part I Generation Expansion Planning Chapter 1 Introduction 1.1 Electricity Outlook 1.2 Renewables 1.3 Power System Planning Chapter 2 Background on Generation Expansion Planning 2.1 Methodology and Issues 2.2 Formulation of the Least-Cost Generation Expansion Planning Problem Chapter 3 Cost Assessment and Methodologies in Generation Expansion Planning 3.1 Basic Cost Concepts 3.1.1 Annual Effective Discount Rate 3.1.2 Present Value 3.1.3 Relationship Between Salvage Value and Depreciation Cost 3.2 Methodologies 3.2.1 Dynamic Programming 3.2.2 Linear Programming 3.2.2.1 Investment Cost (Capital Cost) 3.2.2.2 Operating Cost 3.2.2.3 LP Formula 3.2.3 Integer Programming 3.2.4 Multi-objective Linear Programming 3.2.5 Genetic Algorithm 3.2.6 Game Theory 3.2.7 Reliability Worth 3.2.8 Maximum Principle 3.3 Conventional Approach for Load Modeling 3.3.1 Load Duration Curve Chapter 4 Load Model and Generation Expansion Planning 4.1 Introduction 4.2 Analytical Approach for Long-Term Generation Expansion Planning 4.2.1 Representation of Random Load Fluctuations 4.2.2 Available Generation Capacities 4.2.3 Expected Plant Outputs 4.2.4 Expected Annual Energy 4.2.5 Reliability Measures 4.2.5.1 Expected Annual Unserved Energy 4.2.5.2 Annual Loss-of-Load Probability 4.2.6 Expected Annual Cost 4.2.7 Expected Marginal Values 4.3 Optimal Utilization of Hydro Resources 4.3.1 Introduction 4.3.2 Conventional Peak-Shaving Operation and its Problems 4.3.3 Peak-Shaving Operation Based on Analytical Production Costing Model 4.3.3.1 Basic Concept 4.3.3.2 Peak-Shaving Operation Problem 4.3.4 Optimization Procedure for Peak-Shaving Operation 4.4 Long-Range Generation Expansion Planning 4.4.1 Statement of Long-Range Generation Expansion Planning Problem 4.4.1.1 Master Problem and Basic Subproblems 4.4.1.2 Hydro Subproblem 4.4.2 Optimization Procedures 4.5 Case Studies 4.5.1 Test for Accuracy of Formulas 4.5.2 Test for Solution Convergence and Computing Efficiency 4.6 Conclusion Chapter 5 Probabilistic Production Simulation Model 5.1 Introduction 5.2 Effective Load Distribution Curve 5.3 Case Studies 5.3.1 Case Study I: Sample System I With One 30MW Generator Only 5.3.2 Case Study II: Sample System II With One 10MW Generator Only 5.3.3 Case Study III: Sample System III With Two Generators – 30 and 10MW 5.4 Probabilistic Production Simulation Algorithm 5.4.1 Hartley Transform 5.5 Supply Reserve Rate Chapter 6 Decision Maker´s Satisfaction Using Fuzzy Set Theory 6.1 Introduction 6.2 Fuzzy Dynamic Programming 6.3 Best Generation Mix 6.3.1 Problem Statement 6.3.2 Objective Functions 6.3.3 Constraints 6.3.4 Membership Functions 6.3.5 The Proposed Fuzzy Dynamic Programming-Based Solution Procedure 6.4 Case Study 6.4.1 Results and Discussion 6.5 Conclusion Chapter 7 Best Generation Mix Considering Air Pollution Constraints 7.1 Introduction 7.2 Concept of Flexible Planning 7.3 LP Formulation of the Best Generation Mix 7.3.1 Problem Statement 7.3.2 Objective Functions 7.4 Fuzzy LP Formulation of Flexible Generation Mix 7.4.1 The Optimal Decision Theory by Fuzzy Set Theory 7.4.2 The Function of Fuzzy Linear Programming 7.5 Case Studies 7.5.1 Results by Non-Fuzzy Model 7.5.2 Results by Fuzzy Model 7.6 Conclusion Chapter 8 Generation System Expansion Planning with Renewable Energy 8.1 Introduction 8.2 LP Formulation of the Best Generation Mix 8.2.1 Problem Statement 8.2.2 Objective Function and Constraints 8.3 Fuzzy LP Formulation of Flexible Generation Mix 8.3.1 The Optimal Decision Theory by Fuzzy Set Theory 8.3.2 The Function of Fuzzy Linear Programming 8.4 Case Studies 8.4.1 Test Results 8.4.2 Sensitivity Analysis 8.4.2.1 Capacity Factor of WTG and SCG 8.5 Conclusion Chapter 9 Reliability Evaluation for Power System Planning with Wind Generators and Multi-Energy Storage Systems 9.1 Introduction 9.2 Probabilistic Reliability Evaluation by Monte Carlo Simulation 9.2.1 Probabilistic Operation Model of Generator 1 9.2.2 Probabilistic Operation Model of Generator 2 9.3 Probabilistic Output Prediction Model of WTG 9.4 Multi-Energy Storage System Operational Model 9.4.1 Constraints of ESS control (EUi,k) 9.5 Multi-ESS Operation Rule 9.5.1 Discharging Mode 9.5.2 Charging Mode 9.6 Reliability Evaluation with Energy Storage System 9.7 Case Studies 9.7.1 Power System of Jeju Island 9.7.2 Reliability Evaluation of Single-ESS 9.7.3 Reliability Evaluation of Multi-ESS 9.7.4 Comparison of System A and System B 9.8 Conclusion 9.A Appendices 9.A.1 Single-ESS Model 9.A.2 Multi-ESS Model 9.A.3 Operation of Multi-ESS Models 9.A.4 A Comparative Analysis of Single-ESS and Multi-ESS Models Chapter 10 Genetic Algorithm for Generation Expansion Planning and Reactive Power Planning 10.1 Introduction 10.2 Generation Expansion Planning 10.3 The Least-Cost GEP Problem 10.4 Simple Genetic Algorithm 10.4.1 String Representation 10.4.2 Genetic Operations 10.5 Improved GA for the Least-Cost GEP 10.5.1 String Structure 10.5.2 Fitness Function 10.5.3 Creation of an Artificial Initial Population 10.5.4 Stochastic Crossover, Elitism, and Mutation 10.6 Case Studies 10.6.1 Test Systems´ Description 10.6.2 Parameters for GEP and IGA 10.6.3 Numerical Results 10.6.4 Summary 10.7 Reactive Power Planning 10.8 Decomposition of Reactive Power Planning Problem 10.8.1 Investment-Operation Problem 10.8.2 Benders Decomposition Formulation 10.9 Solution Algorithm for VAR Planning 10.10 Simulation Results 10.10.1 The 6-bus System 10.10.2 IEEE 30-bus System 10.10.3 Summary 10.11 Conclusion References Part II Transmission System Expansion Planning Chapter 11 Transmission Expansion Planning Problem 11.1 Introduction 11.2 Long-Term Transmission Expansion Planning 11.3 Yearly Transmission Expansion Planning 11.3.1 Power Flow Model 11.3.2 Optimal Operation Cost Model 11.3.3 Probability of Line Failures 11.3.4 Expected Operation Cost 11.3.5 Annual Expected Operation Cost 11.4 Long-Term Transmission Planning Problem 11.4.1 Long-Term Transmission Planning Model 11.4.2 Solution Technique for the Planning Problem 11.5 Case Study 11.6 Conclusion Chapter 12 Models and Methodologies 12.1 Introduction 12.2 Transmission System Expansion Planning Problem 12.3 Cost Evaluation for TEP Considering Electricity Market 12.4 Model Development History for TEP Problem 12.5 General DC Power Flow-Based Formulation of TEP Problem 12.5.1 Linear Programming 12.5.2 Dynamic Programming 12.5.3 Integer Programming (IP) 12.5.4 Genetic Algorithm by Mixed Integer Programming (MIP) 12.6 Branch and Bound Algorithm 12.6.1 Branch and Bound Algorithm and Flow Chart 12.6.2 Sample System Study by Branch and Bound Chapter 13 Probabilistic Production Cost Simulation for TEP 13.1 Introduction 13.2 Modeling of Extended Effective Load for Composite Power System 13.3 Probability Distribution Function of the Synthesized Fictitious Equivalent Generator 13.4 Reliability Evaluation and Probabilistic Production Cost Simulation at Load Points 13.5 Case Studies 13.5.1 Numerical Calculation of a Simple Example 13.5.2 Case Study: Modified Roy Billinton Test System 13.6 Conclusion Chapter 14 Reliability Constraints 14.1 Deterministic Reliability Constraint Using Contingency Constraints 14.1.1 Introduction 14.1.2 Transmission Expansion Planning Problem 14.1.3 Maximum Flow Under Contingency Analysis for Security Constraint 14.1.4 Alternative Types of Contingency Criteria 14.1.5 Solution Algorithm 14.1.6 Case Studies 14.1.7 Conclusion Appendix 14.2 Deterministic Reliability Constraints 14.2.1 Introduction 14.2.2 Transmission System Expansion Planning Problem 14.2.3 Maximum Flow Under Contingency Analysis for Security Constraint 14.2.4 Solution Algorithm 14.2.5 Case Studies 14.2.6 Conclusion 14.3 Probabilistic Reliability Constraints 14.3.1 Introduction 14.3.2 Transmission System Expansion Planning Problem 14.3.3 Composite Power System Reliability Evaluation 14.3.4 Solution Algorithm 14.3.5 Case Study 14.3.6 Conclusion 14.4 Outage Cost Constraints 14.4.1 Introduction 14.4.2 The Objective Function 14.4.3 Constraints 14.4.4 Outage Cost Assessment of Transmission System 14.4.5 Reliability Evaluation of Transmission System 14.4.6 Outage Cost Assessment 14.4.7 Solution Algorithm 14.4.8 Case Study 14.4.9 Conclusion 14.5 Deterministic–Probabilistic (D–P) Criteria Chapter 15 Fuzzy Decision Making for TEP 15.1 Introduction 15.2 Fuzzy Transmission Expansion Planning Problem 15.3 Equivalent Crisp Integer Programming and Branch and Bound Method 15.4 Membership Functions 15.5 Solution Algorithm 15.6 Testing 15.6.1 Discussion of Results 15.6.2 Solution Sensitivity to Reliability Criterion 15.6.3 Sensitivity to Budget for Construction Cost 15.7 Case Study 15.8 Conclusion 15.A Appendix 15.A.1 Network Modeling of Power System 15.A.2 Definition 15.A.3 Fuzzy Integer Programming (FIP) Chapter 16 Optimal Reliability Criteria for TEP 16.1 Introduction 16.2 Probabilistic Optimal Reliability Criterion 16.2.1 Introduction 16.2.2 Optimal Reliability Criterion Determination 16.2.3 Optimal Composite Power System Expansion Planning 16.2.3.1 The Objective Function 16.2.3.2 Constraints 16.2.4 Composite Power System Reliability Evaluation and Outage Cost Assessment 16.2.4.1 Reliability Evaluation at HLI 16.2.4.2 Reliability Evaluation at HLII (Composite Power System) 16.2.4.3 Flow Chart of the Proposed Methodology for Optimal Reliability Criterion Determination in Transmission System Expansion Planning 16.2.5 Case Study 16.2.6 Conclusion 16.3 Deterministic Reliability Criterion for Composite Power System Expansion Planning 16.3.1 Introduction 16.3.2 Optimal Reliability Criterion Determination 16.3.3 Optimal Composite Power System Expansion Planning 16.3.3.1 Composite Power System Expansion Planning Formulation in CmExpP.For 16.3.3.2 Flow Chart 16.3.4 Composite Power System Reliability Evaluation 16.3.4.1 Reliability Indices at Load Points 16.3.4.2 Reliability Indices of the Bulk System 16.3.5 DMR Evaluation using Maximum Flow Method 16.3.6 Flow Chart of Optimal Reliability Criterion Determination 16.3.7 Case Study 16.3.7.1 Basic Input Data 16.3.7.2 Results of Construction Costs of Cases 16.3.7.3 Reliability Evaluation 16.3.8 Conclusion Chapter 17 Probabilistic Reliability-Based Expansion Planning with Wind Turbine Generators 17.1 Introduction 17.2 The Multistate Operation Model of WTG 17.2.1WTG Power Output Model 17.2.2Wind Speed Model 17.2.3The Multistate Model of WTG using Normal Probability Distribution Function 17.3 Reliability Evaluation of a Composite Power System with WTG 17.3.1Reliability Indices at Load Buses 17.3.2System Reliability Indices 17.4 Case Study 17.5 Conclusion 17.A Appendix Chapter 18 Probabilistic Reliability-Based HVDC Expansion Planning with Wind Turbine Generators 18.1 The Status of HVDC 18.2 HVDC Technology for Energy Efficiency and Grid Reliability 18.3 HVDC Impacts on Transmission System Reliability 18.4 Case Study References Index EULA