دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Crane. Harry
سری: Monographs on statistics and applied probability (Series) 157
ISBN (شابک) : 9781138585997, 1138630152
ناشر: CRC Press
سال نشر: 2018
تعداد صفحات: 257
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 3 مگابایت
کلمات کلیدی مربوط به کتاب مبانی احتمالی تحلیل شبکه آماری: تجزیه و تحلیل سیستم -- مدل های ریاضی، تجزیه و تحلیل شبکه (برنامه ریزی)
در صورت تبدیل فایل کتاب Probabilistic foundations of statistical network analysis به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب مبانی احتمالی تحلیل شبکه آماری نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Content: DedicationPreface AcknowledgementsOrientation Analogy: Bernoulli trials What it is: Graphs vs Networks Moving beyond graphs How to look at it: Labeling and representation Where it comes from: Context Making sense of it all: Coherence What we're talking about: Common examples of network data Internet Social networks Karate club Enron email corpus Collaboration networks Other networks Some common scenarios Major Open Questions Sparsity Modeling network complexity Sampling issues Modeling temporal variation Chapter synopses and reading guide Binary relational data Network sampling Generative models Statistical modeling paradigm Vertex exchangeable models Getting beyond graphons Relatively exchangeable models Edge exchangeable models Relationally exchangeable models DEDICATIONDynamic network models ã Binary relational dataScenario: Patterns in international trade Summarizing network structure Dyad independence model Exponential random graph models (ERGMs) Scenario: Friendships in a high school Network inference under sampling Further reading ã ã Network sampling Opening example Consistency under selection Consistency in the p model Significance of sampling consistency Toward a coherent framework of network modeling Selection from sparse networks Scenario: Ego networks in high school friendships Network sampling schemes Relational sampling Edge sampling Hyperedge sampling Path sampling Snowball sampling Units of observation What is the sample size? Consistency under subsampling Further reading Generative modelsSpecification of generative models Preferential Attachment model Random walk models ErdË os-R'enyi-Gilbert model General sequential construction Further reading Statistical modeling paradigmThe quest for coherence An incoherent model What is a statistical model? Population model Finite sample models Coherence Coherence in sampling models Coherence in generative models Statistical implications of coherence Examples ErdË os-R'enyi-Gilbert model under selection sampling ERGM with selection sampling ErdË os-R'enyi-Gilbert model under edge samplingInvariance principles Further reading Vertex exchangeable models Preliminaries: Formal definition of exchangeability Implications of exchangeability Finite exchangeable random graphs Exchangeable ERGMs Countable exchangeable models Graphon models Generative model Exchangeability of graphon models Aldous-Hoover theorem Graphons and vertex exchangeability Subsampling description Viability of graphon models Implication: Dense structure Implication: Representative sampling The emergence of graphons Potential benefits of graphon models Connection to de Finetti's theorem Graphon estimation Further reading Getting beyond graphonsSomething must go Sparse graphon models Completely random measures and graphex models Scenario: Formation of Facebook friendships Network representation Interpretation of vertex labels Exchangeable point process models Graphex representation Sampling context Further discussion Variants of invariance Relatively exchangeable models DEDICATIONEdge exchangeable models Relationally exchangeable modelsRelatively exchangeable modelsScenario: heterogeneity in social networks Stochastic blockmodels Generalized blockmodels Community detection and Bayesian versions of SBM Beyond SBMs and community detection Relative exchangeability with respect to another network Scenario: high school social network revisited Exchangeability relative to a social network Lack of interference Label equivariance Latent space models Relatively exchangeable random graphs Relatively exchangeable f-processes Relative exchangeability under arbitrary sampling Final remarks and further reading Edge exchangeable modelsScenario: Monitoring phone calls Edge-centric view Edge exchangeability Interaction propensity process Characterizing edge exchangeable random graphs Vertex components models Stick-breaking constructions for vertex components Hollywood model The Hollywood process Role of parameters in the Hollywood model Statistical properties of the Hollywood model Prediction from the Hollywood model Thresholding Contexts for edge sampling Concluding remarks Connection to graphex models Further reading Relationally exchangeable modelsSampling multiway interactions (hyperedges) Collaboration networks Coauthorship networks Representing multiway interaction networks Hyperedge exchangeability Interaction propensity process Characterization for hyperedge exchangeable networks Scenario: Traceroute sampling of Internet topology Representing the data Path exchangeability Relational exchangeability General Hollywood model Markovian vertex components models Concluding remarks and further reading Dynamic network modelsScenario: Dynamics in social media activity Modeling considerations Network dynamics: Markov property Modeling the initial state Is the Markov property a good assumption? Temporal Exponential Random Graph Model (TERGM) Projectivity and sampling Example: a TERGM for triangle counts Projective Markov property Rewiring chains and Markovian graphons Exchangeable rewiring processes (Markovian graphons) Graph-valued L'evy processes Inference from graph-valued L'evy processes Continuous time processes Poissonian construction Further reading Bibliography Index