دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 1
نویسندگان: Fred H. Croom
سری:
ISBN (شابک) : 9812432884, 9789812432889
ناشر: Cengage Learning India Private Limited
سال نشر: 2008
تعداد صفحات: 318
زبان: English
فرمت فایل : DJVU (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 13 مگابایت
در صورت تبدیل فایل کتاب Principles of Topology به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب اصول توپولوژی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این متن اصول بنیادی توپولوژی را به طور دقیق اما نه انتزاعی ارائه می دهد. این بر ماهیت هندسی موضوع و کاربردهای ایده های توپولوژیکی در هندسه و تجزیه و تحلیل ریاضی تأکید می کند. موضوعات معمول توپولوژی مجموعه نقطه شامل فضاهای متریک، فضاهای توپولوژیکی عمومی، پیوستگی، هم ارزی توپولوژیکی، مبنا، زیربنا، اتصال، فشردگی، ویژگی های جداسازی، اندازه گیری، فضاهای فرعی، فضاهای محصول و فضاهای ضریب در این متن بررسی می شوند. . بیشتر اطلاعات واقعی در مورد توپولوژی ارائه شده در این متن در قضایای بیان شده و در مثال ها، شکل ها و تمرین های همراه نشان داده شده است. این کتاب شامل تمرین های زیادی با درجه سختی های مختلف است. نماد استفاده شده در این متن به طور معقولی استاندارد است. لیستی از نمادها با تعاریف در صفحات انتهایی جلو ظاهر می شود. این متن برای مقدمه یک ترم بر توپولوژی در مقاطع کارشناسی و کارشناسی ارشد طراحی شده است. این برای رشتههای ریاضی خردسالی که حساب دیفرانسیل و انتگرال چند متغیره را مطالعه کردهاند، قابل دسترسی است.
This text presents the fundamental principles of topology rigorously but not abstractly. It emphasizes the geometric nature of the subject and the applications of topological ideas to geometry and mathematical analysis. The usual topics of point-set topology, including metric spaces, general topological spaces, continuity, topological equivalence, basis, sub-basis, connectedness , compactness, separation properties, metrization, subspaces, product spaces, and quotient spaces are treated in this text. Most of the factual information about topology presented in this text is stated in the theorems and illustrated in the accompanying examples, figures and exercises. This book contains many exercises of varying degrees of difficulty. The notation used in this text is reasonably standard; a list of symbols with definitions appears on the front end-sheets. This text is designed for a one-semester introduction to topology at the undergraduate and beginning graduate levels. It is accessible to junior mathematics majors who have studied multivariable calculus.
Principles of Topology [Fred H. Croom]......Page Cover_0001.djvu
Title......Page 0001_0001.djvu
Copyright......Page 0002_0001.djvu
Preface......Page 0003_0001.djvu
List of Symbols......Page 0007_0001.djvu
Contents......Page 0009_0001.djvu
1.1 The nature of topology......Page 0013_0001.djvu
1.2 The origin of topology......Page 0019_0001.djvu
1.3 Preliminary ideas from set theory......Page 0023_0001.djvu
1.4 Operations on sets: union, intersection, and difference......Page 0026_0001.djvu
1.5 Cartesian products......Page 0031_0001.djvu
1.6 Functions......Page 0032_0001.djvu
1.7 Equivalence relations......Page 0037_0001.djvu
Suggestions for further reading......Page 0040_0001.djvu
2.1 Upper and lower bounds......Page 0041_0001.djvu
2.2 Finite and infinite sets......Page 0045_0001.djvu
2.3 Open sets and closed sets on the real line......Page 0051_0001.djvu
2.4 The nested intervals theorem......Page 0058_0001.djvu
2.5 The plane......Page 0061_0001.djvu
Suggestions for further reading......Page 0063_0001.djvu
Historical Notes for Chapter 2......Page 0065_0001.djvu
3.1 The definition and some examples......Page 0067_0001.djvu
3.2 Open sets and closed sets in metric spaces......Page 0073_0001.djvu
3.3 Interior, closure, and boundary......Page 0081_0001.djvu
3.4 Continuous functions......Page 0087_0001.djvu
3.5 Equivalence of metric spaces......Page 0090_0001.djvu
3.6 New spaces from old......Page 0094_0001.djvu
3.7 Complete metric spaces......Page 0099_0001.djvu
Suggestions for further reading......Page 0108_0001.djvu
Historical Notes for Chapter 3......Page 0109_0001.djvu
4.1 The definition and some examples......Page 0111_0001.djvu
4.2 Interior, closure, and boundary......Page 0115_0001.djvu
4.3 Basis and subbasis......Page 0121_0001.djvu
4.4 Continuity and topological equivalence......Page 0127_0001.djvu
4.5 Subspaces......Page 0134_0001.djvu
Suggestions for further reading......Page 0140_0001.djvu
Historical Notes for Chapter 4......Page 0141_0001.djvu
5.1 Connected and disconnected spaces......Page 0143_0001.djvu
5.2 Theorems on connectedness......Page 0145_0001.djvu
5.3 Connected subsets of the real line......Page 0155_0001.djvu
5.4 Applications of connectedness......Page 0156_0001.djvu
5.5 Path connected spaces......Page 0159_0001.djvu
5.6 Locally connected and locally path connected spaces......Page 0166_0001.djvu
Suggestions for further reading......Page 0171_0001.djvu
Historical Notes for Chapter 5......Page 0172_0001.djvu
6.1 Compact spaces and subspaces......Page 0173_0001.djvu
6.2 Compactness and continuity......Page 0179_0001.djvu
6.3 Properties related to compactness......Page 0184_0001.djvu
6.4 One-point compactification......Page 0193_0001.djvu
6.5 The Cantor set......Page 0199_0001.djvu
Suggestions for further reading......Page 0204_0001.djvu
Historical Notes for Chapter 6......Page 0205_0001.djvu
7.1 Finite products......Page 0207_0001.djvu
7.2 Arbitrary products......Page 0216_0001.djvu
7.3 Comparison of topologies......Page 0223_0001.djvu
7.4 Quotient spaces......Page 0225_0001.djvu
7.5 Surfaces and manifolds......Page 0233_0001.djvu
Suggestions for further reading......Page 0240_0001.djvu
Historical Notes for Chapter 7......Page 0241_0001.djvu
8.1 T0, T1, and T2-spaces......Page 0243_0001.djvu
8.2 Regular spaces......Page 0246_0001.djvu
8.3 Normal spaces......Page 0249_0001.djvu
8.4 Separation by continuous functions......Page 0255_0001.djvu
8.5 Metrization......Page 0265_0001.djvu
8.6 The Stone-Cech compactification......Page 0273_0001.djvu
Suggestions for further reading......Page 0277_0001.djvu
Historical Notes for Chapter 8......Page 0278_0001.djvu
9.2 The fundamental group......Page 0279_0001.djvu
9.3 The fundamental group of S1......Page 0292_0001.djvu
9.4 Additional examples of fundamental groups......Page 0298_0001.djvu
9.5 The Brouwer fixed point theorem and related results......Page 0303_0001.djvu
9.6 Categories and functors......Page 0307_0001.djvu
Suggestions for further reading......Page 0310_0001.djvu
Historical Notes for Chapter 9......Page 0311_0001.djvu
Appendix: Introduction to Groups......Page 0313_0001.djvu
Bibliography......Page 0315_0001.djvu
Index......Page 0317_0001.djvu