دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Liviu Ornea. Misha Verbitsky
سری: Progress in Mathematics 354
ISBN (شابک) : 9783031581199, 9783031581205
ناشر: Springer
سال نشر: 2024
تعداد صفحات: 736
[729]
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 8 Mb
در صورت تبدیل فایل کتاب Principles of Locally Conformally Kähler Geometry به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب اصول هندسه محلی کاهلر مطابقت نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این مونوگراف خوانندگان را با هندسه محلی کاهلر (LCK) آشنا می کند و یک نمای کلی از جدیدترین نتایج ارائه می دهد. هندسه LCK یک منطقه به سرعت در حال توسعه در هندسه پیچیده که با منیفولدهای غیر کاهلر سروکار دارد، پیوندهای قوی با بسیاری از حوزههای دیگر ریاضیات، از جمله هندسه جبری، توپولوژی، و تحلیل پیچیده دارد. نویسندگان بر این ارتباطات برای ایجاد یک درمان یکپارچه و دقیق از موضوع که هم برای دانشجویان و هم برای محققان مناسب است، تأکید میکنند. بخش اول پایههای لازم را برای کسانی که برای اولین بار به هندسه LCK نزدیک میشوند، با اثباتهای کامل و عمدتاً مستقل میسازد و همچنین مطالبی را که اغلب از کتابهای درسی حذف میشوند، مانند هندسه تماس و ساساکی، مداری، اتصالات ارسمان، و نظریه شاخ و برگ را پوشش میدهد. سپس موضوعات پیشرفتهتر در قسمت دوم مورد بررسی قرار میگیرند، از جمله سطوح بیضوی غیر کاهلر، همشناسی دستههای برداری هولومورفیک در منیفولدهای Hopf، فضاهای Kuranishi و Teichmüller برای منیفولدهای LCK با پتانسیل، و فرمهای هارمونیک در منیفولدهای ساساکی و وایسمن. هر فصل در بخش های I و II با انگیزه و زمینه تاریخی برای موضوعات مورد بررسی شروع می شود و شامل تمرین های متعددی برای کاوش بیشتر در موضوعات مهم است. بخش سوم تحقیقات فعلی در مورد هندسه LCK را بررسی میکند و پیشرفتها را در موضوعاتی مانند گروههای خودمورفیسم در منیفولدهای LCK، کنشهای همیلتونی پیچخورده و کاهش LCK، منیفولدهای انیشتین-ویل و ثابت فوتاکی، و هندسه LCK روی nilmanifolds و onssol شرح میدهد. شواهد جدید بسیاری از نتایج با استفاده از روشهایی که قبلاً در متن توسعه داده شدهاند، ارائه شدهاند. سپس متن با فصلی پایان مییابد که بیش از 100 مسئله باز را جمعآوری میکند، با زمینه و نکاتی که در صورت امکان، برای الهام بخشیدن به تحقیقات آینده ارائه میشود.
This monograph introduces readers to locally conformally Kähler (LCK) geometry and provides an extensive overview of the most current results. A rapidly developing area in complex geometry dealing with non-Kähler manifolds, LCK geometry has strong links to many other areas of mathematics, including algebraic geometry, topology, and complex analysis. The authors emphasize these connections to create a unified and rigorous treatment of the subject suitable for both students and researchers. Part I builds the necessary foundations for those approaching LCK geometry for the first time with full, mostly self-contained proofs and also covers material often omitted from textbooks, such as contact and Sasakian geometry, orbifolds, Ehresmann connections, and foliation theory. More advanced topics are then treated in Part II, including non-Kähler elliptic surfaces, cohomology of holomorphic vector bundles on Hopf manifolds, Kuranishi and Teichmüller spaces for LCK manifolds with potential, and harmonic forms on Sasakian and Vaisman manifolds. Each chapter in Parts I and II begins with motivation and historic context for the topics explored and includes numerous exercises for further exploration of important topics. Part III surveys the current research on LCK geometry, describing advances on topics such as automorphism groups on LCK manifolds, twisted Hamiltonian actions and LCK reduction, Einstein-Weyl manifolds and the Futaki invariant, and LCK geometry on nilmanifolds and on solvmanifolds. New proofs of many results are given using the methods developed earlier in the text. The text then concludes with a chapter that gathers over 100 open problems, with context and remarks provided where possible, to inspire future research.
Contents Introduction I Lectures in locally conformally Kähler geometry Kähler manifolds Complex manifolds Holomorphic vector fields Hermitian manifolds Kähler manifolds Examples of Kähler manifolds Menagerie of complex geometry Exercises Kähler geometry and holomorphic vector fields The Lie algebra of holomorphic Hamiltonian Killing fields Connections in vector bundles and the Frobenius theorem Introduction Connections in vector bundles Curvature of a connection Ehresmann connections Ehresmann connection on smooth fibrations Linear Ehresmann connections on vector bundles Frobenius form and Frobenius theorem Basic forms The curvature of an Ehresmann connection The Riemann–Hilbert correspondence Flat bundles and parallel sections Local systems Exercises Locally conformally Kähler manifolds Introduction Locally conformally symplectic manifolds Galois covers and the deck transform group Locally conformally Kähler manifolds LCK manifolds: the tensorial definition The weight bundle and the homothety character Automorphic forms related to the homothety character Kähler covers of LCK manifolds: the second definition LCK manifolds via an L-valued Kähler form: the third definition Conformally equivalent Kähler forms LCK manifolds via charts and atlases: the fourth definition The LCK rank A first example Notes Exercises Hodge theory on complex manifolds and Vaisman's theorem Introduction Preliminaries Hodge decomposition on complex manifolds Holomorphic one-forms and first cohomology Positive (1,1)-forms Vaisman's theorem Exercises Holomorphic vector bundles Introduction Holomorphic vector bundles Holomorphic structure operator The -operator on vector bundles Connections and holomorphic structure operators Curvature of holomorphic line bundles Kähler potentials and plurisubharmonic functions Chern connection obtained from an Ehresmann connection Calabi formula (2.6). Positive line bundles Exercises CR, Contact and Sasakian manifolds Introduction CR-manifolds Contact manifolds and pseudoconvex CR-manifolds Contact manifolds and symplectic cones Levi form and pseudoconvexity Normal varieties Stein completions and Rossi-Andreotti–Siu theorem Sasakian manifolds Notes CR-structures and CR-manifolds Sasakian manifolds: the tensorial definition by Sh. Sasaki Exercises Vaisman manifolds Introduction Many definitions of Vaisman manifolds Riemannian cones Basics of Vaisman geometry Holonomy and the de Rham splitting theorem Conical Riemannian metrics Vaisman manifolds: local properties Vaisman metrics obtained from holomorphic automorphisms The canonical foliation on compact Vaisman manifolds Exercises The structure of compact Vaisman manifolds Introduction The Vaisman metric expressed through the Lee form Decomposition for harmonic 1-forms on Vaisman manifolds Rank 1 Vaisman structures The structure theorem Exercises Orbifolds Introduction Groupoids and orbispaces Real orbifolds Complex orbifolds Quotients by tori Principal orbifold bundles Exercises Quasi-regular foliations Introduction Quasi-regular foliations and holonomy Circle bundles over Riemannian orbifolds Quasi-regular Sasakian manifolds Notes Exercises Regular and quasi-regular Vaisman manifolds Introduction Quasi-regular Vaisman manifolds as cone quotients Regular Vaisman manifolds Quasi-regular Vaisman manifolds are orbifold elliptic fibrations Density of quasi-regular Vaisman manifolds Immersion theorem for Vaisman manifolds Notes Exercises LCK manifolds with potential Introduction Deformations of LCK structures LCK manifolds with potential LCK manifolds with potential, proper and improper LCK manifolds with potential and preferred gauge The monodromy of LCK manifolds with proper potential ddc-potential Deforming an LCK potential to a proper potential Stein manifolds and normal families Stein manifolds Normal families of functions The C0 - topology on spaces of functions The C1 - topology on spaces of sections Montel theorem for normal families The Stein completion of the Kähler cover Appendix 1: another construction of the Stein completion Appendix 2: the proof of the Kodaira–Spencer stability theorem Notes Exercises Embedding LCK manifolds with potential in Hopf manifolds Introduction Preliminaries on functional analysis The Banach space of holomorphic functions Compact operators Holomorphic contractions The Riesz–Schauder theorem The embedding theorem Density implies the embedding theorem Density of *-finite functions on the minimal Kähler cover Notes Exercises Logarithms and algebraic cones Introduction The logarithm of an automorphism Logarithms of an automorphism of a Banach ring Logarithms of the homothety of the cone Algebraic structures on Stein completions Ideals of the embedding to a Hopf manifold Algebraic structures on Stein completions: the existence Algebraic structures on Stein completions: the uniqueness Algebraic cones Algebraic cones defined in terms of C*-action Algebraic cones and Hopf manifolds Exercises Pseudoconvex shells and LCK metrics on Hopf manifolds Introduction LCK metrics on Hopf manifolds Affine cones of projective varieties Pseudoconvex shells Pseudoconvex shells in algebraic cones All linear Hopf manifolds are LCK with potential Pseudoconvex shells in algebraic cones LCK manifolds admitting an S1-action Existence of S1-action on an LCK manifold with potential Quotients of algebraic cones are LCK Holomorphic isometries of LCK manifolds with potential Algebraic cones as total spaces of C*-bundles Algebraic cones: an alternative definition Closed algebraic cones and normal varieties Exercises Embedding theorem for Vaisman manifolds Introduction Embedding Vaisman manifolds to Hopf manifolds Semisimple Hopf manifolds are Vaisman Algebraic groups and Jordan–Chevalley decomposition The algebraic cone of an LCK manifold with potential Deforming an LCK manifold with proper potential to Vaisman manifolds Exercises Non-linear Hopf manifolds Introduction Hopf manifolds and holomorphic contractions Holomorphic contractions on Stein varieties Non-linear Hopf manifolds are LCK Minimal Hopf embeddings Poincaré–Dulac normal forms Exercises Morse–Novikov and Bott–Chern cohomology of LCK manifolds Introduction Preliminaries on differential operators Differential operators Elliptic complexes Bott–Chern cohomology Morse–Novikov cohomology Morse–Novikov class of an LCK manifold Twisted Dolbeault cohomology Twisted Bott–Chern cohomology Bott–Chern classes and Morse–Novikov cohomology Exercises Existence of positive potentials Introduction A counterexample to the positivity of the potential A ddc-potential on a compact LCK manifold is positive somewhere Stein manifolds with negative ddc-potential Remmert theorem and 1-jets on Stein manifolds Negative sets for ddc-potentials are Stein Stein LCK manifolds admit a positive ddc-potential Gluing the LCK forms Regularized maximum of plurisubharmonic functions Gluing of LCK potentials Exercises Holomorphic S1 actions on LCK manifolds Introduction S1-actions on compact LCK manifolds The averaging procedure Holomorphic homotheties on a Kähler manifold Vanishing of the twisted Bott–Chern class on manifolds endowed with an S1-action Exercises Sasakian submanifolds in algebraic cones Introduction Sasakian structures on CR-manifolds Isometric embeddings of Kähler and Vaisman manifolds Embedding Sasakian manifolds in spheres Kodaira-like embedding for Sasakian manifolds Optimality of the embedding result Notes Exercises Oeljeklaus–Toma manifolds Introduction Many species of Inoue surfaces Class VII0 surfaces with b2=0 Oeljeklaus–Toma manifolds and LCK geometry Subvarieties in the OT-manifolds Number theory: local and global fields Normed fields Local fields Valuations and extensions of global fields Dirichlet's unit theorem Oeljeklaus–Toma manifolds The solvmanifold structure The LCK metric Non-existence of complex subvarieties in OT-manifolds Non-existence of curves on OT-manifolds Exercises Idempotents in tensor products OT-manifolds Appendices Appendix A. Gauduchon metrics Appendix B. An explicit formula of the Weyl connection II Advanced LCK geometry Non-Kähler elliptic surfaces Introduction Gauss–Manin local systems and variations of Hodge structure The Gauss–Manin connection Variations of Hodge structures Gromov's compactness theorem Barlet spaces Elliptic fibrations with multiple fibres Multiple fibres of elliptic fibrations and the relative Albanese map Structure of a neighbourhood of a multiple fiber Non-Kähler elliptic surfaces Structure of elliptic fibrations on non-Kähler surfaces Isotrivial elliptic fibrations The Blanchard theorem Exercises Group structure on a curve of genus 1 Elliptic fibrations Kodaira classification for non-Kähler complex surfaces Introduction An overview of this chapter The Buchdahl–Lamari theorem Locally conformally Kähler surfaces Cohomology of non-Kähler surfaces Bott–Chern cohomology of a surface First cohomology of non-Kähler surfaces Second cohomology of non-Kähler surfaces Vanishing in multiplication of holomorphic 1-forms Structure of multiplication in de Rham cohomology of non-Kähler surfaces without curves Elliptic fibrations on non-Kähler surfaces Class VII surfaces The Riemann–Roch formula for embedded curves (-1)-curves Non-Kähler surfaces are either class VII or elliptic Brunella's theorem: all Kato surfaces are LCK The embedding theorem in complex dimension 2 Inoue surfaces Exercises Riemann–Roch formula for a curve Complex surfaces Cohomology of holomorphic bundles on Hopf manifolds Introduction Derived functors and the Grothendieck spectral sequence Equivariant sheaves, local systems and cohomology Equivariant sheaves and equivariant objects Group cohomology, local systems and Ext groups Group cohomology of Z Directed sheaves and cohomology of Cn0 Directed sheaves: definition and examples Serre duality with compact supports Cohomology of Cn0 Contractions define compact operators on holomorphic functions Mall's theorem on cohomology of vector bundles Exercises Mall bundles and flat connections on Hopf manifolds Introduction Mall bundles and coherent sheaves Flat affine structures and the development map Coherent sheaves Normal sheaves and reflexive sheaves Extension of coherent sheaves on complex varieties Dolbeault cohomology of Hopf manifolds Degree of a line bundle Computation of H0,p(H) for a Hopf manifold Holomorphic differential forms on Hopf manifolds Mall bundles on Hopf manifolds Mall bundles: definition and examples The Euler exact sequence and an example of a non-Mall bundle on a classical Hopf manifold Resonance in Mall bundles Resonant matrices Resonant equivariant bundles Holomorphic connections on vector bundles The flat connection on a non-resonant Mall bundle Flat connections on Hopf manifolds Developing map for flat affine manifolds Flat affine connections on a Hopf manifold A new proof of Poincaré theorem about linearization of non-resonant contractions Harmonic forms on Hopf manifolds with coefficients in a bundle The Hodge * operator and cohomology of holomorphic bundles Multiplication in cohomology of holomorphic bundles on Vaisman-type Hopf manifolds Appendix: cohomology of local systems on S1 and the multiplication in cohomology of holomorphic bundles on Hopf manifolds Exercises Kuranishi and Teichmüller spaces for LCK manifolds Introduction Deformation spaces Deformations of Hopf surfaces: a short survey Teichmüller space of Hopf manifolds and applications to LCK geometry The Kuranishi space Nijenhuis–Schouten and Frölicher–Nijenhuis brackets Kuranishi space: the definition Kuranishi to Teichmüller map The Kuranishi space for Hopf manifolds Vanishing of H2(TH) for a Hopf manifold Kuranishi space and linear vector fields Kuranishi to Teichmüller map for Hopf manifolds Hilbert schemes The space of complex structures on LCK manifolds with potential The conjugation orbit of a linear operator Diffeomorphism orbits of LCK structures with potential have Vaisman limit points The Teichmüller space of LCK manifolds with potential Notes Exercises Hilbert polynomials Deformation theory The set of Lee classes on LCK manifolds with potential Introduction LCK metrics on Vaisman manifolds Opposite Lee forms on LCK manifolds with potential Hodge decomposition of H1(M) on LCK manifolds with potential The set of Lee classes on Vaisman manifolds The set of Lee classes on LCK manifolds with potential Notes Exercises Harmonic forms on Sasakian and Vaisman manifolds Introduction Basic cohomology and taut foliations Hattori spectral sequence and Hattori differentials Supersymmetry and geometric structures on manifolds Lie superalgebras acting on the de Rham algebra Lie superalgebras and superderivations Differential operators on graded commutative algebras Supersymmetry on Kähler manifolds Hattori differentials on Sasakian manifolds Hattori spectral sequence and associated differentials Hattori differentials on Sasakian manifolds Transversally Kähler manifolds Basic cohomology and Hodge theory on Sasakian manifolds The cone of a morphism of complexes and cohomology of Sasakian manifolds Harmonic form decomposition on Sasakian manifolds Hodge theory on Vaisman manifolds Basic cohomology of Vaisman manifolds Harmonic forms on Vaisman manifolds The supersymmetry algebra of a Sasakian manifold Notes Exercises Dolbeault cohomology of LCK manifolds with potential Introduction Weights of a torus action on the de Rham algebra Dolbeault cohomology on manifolds with a group action Dolbeault cohomology of Vaisman manifolds Basic and Dolbeault cohomologies of Vaisman manifolds Harmonic decomposition for the Dolbeault cohomology Dolbeault cohomology of LCK manifolds with potential Exercises Isometry groups Aeppli and Dolbeault cohomologies of Vaisman manifolds Aeppli cohomology and strongly Gauduchon metrics Calabi–Yau theorem for Vaisman manifolds Introduction The Lee field on a compact Vaisman manifold The complex Monge-Ampère equation Exercises Holomorphic tensor fields on LCK manifolds with potential Introduction Holomorphic tensors on LCK manifolds with potential Zariski closures and the Chevalley theorem Holomorphic tensors on Vaisman manifolds Exercises III Topics in locally conformally Kähler geometry Automorphism groups of LCK manifolds Infinitesimal automorphisms Lifting a transformation group to a Kähler cover Affine vector fields Conformal vector fields on compact LCK manifolds Holomorphic Lee field Twisted Hamiltonian actions and LCK reduction Twisted Hamiltonian actions The LCK momentum map LCK reduction at 0 Complex Lie group acting by holomorphic isometries LCK manifolds admitting a torus action with an open orbit Toric LCK manifolds Elliptic curves on Vaisman manifolds Counting elliptic curves Application to Sasaki manifolds: closed Reeb orbits Boothby–Wang theorem for Besse contact manifolds Weinstein conjecture for Sasakian manifolds Submersions and bimeromorphic maps of LCK manifolds A topological criterion Holomorphic submersions LCK metrics on fibrations LCK metrics on products Blow-up at points Blow-up along submanifolds Weak LCK structures Moishezon manifolds are not LCK LCK currents and Fujiki LCK class LCK manifolds in terms of currents An analogue of Fujiki class C Bott–Chern cohomology of LCK manifolds with potential Bott–Chern versus Dolbeault cohomology Generic vanishing of Bott–Chern cohomology Hopf surfaces in LCK manifolds with potential Diagonal and non-diagonal Hopf surfaces Complex curves in non-diagonal Hopf surfaces Gauduchon metrics on LCK manifolds with potential Complex surfaces of Kähler rank 1 Surfaces in compact LCK manifolds with potential Algebraic groups Orbits of algebraic groups in Hopf manifolds Hopf surfaces in LCK manifolds with potential The pluricanonical condition Riemannian geometry of LCK manifolds Existence of parallel vector fields LCK metrics are not Einstein The Vaisman condition in terms of the Bismut connection Notes Bismut connections Curvature properties Harmonic maps and distributions Einstein–Weyl manifolds and the Futaki invariant The Einstein–Weyl condition The Futaki invariant of Hermitian manifolds The Futaki invariant on LCK manifolds LCK structures on homogeneous manifolds Introduction Homogeneous LCK manifolds Homogeneous Vaisman manifolds Notes LCK structures on nilmanifolds and solvmanifolds Invariant geometric structures on Lie groups Twisted Dolbeault cohomology on nilpotent Lie algebras LCK nilmanifolds LCK solvmanifolds Explicit LCK metrics on Inoue surfaces Inoue surfaces of class S0 Inoue surfaces of class S+ The solvable group Sol41 The structure of complex Lie groups The group (Sol41, I0) The group (Sol'41, I1) Non-existence of LCK metrics on sol'41 Cocompact lattices in Sol41 and Sol'41 Equivalence with the Inoue's description of the surfaces of class S+. The LCK metric on S+N,p,q,r,0 Non-existence of LCK metrics on S+N,p,q,r,t, t=0 Inoue surfaces of class S-. More on Oeljeklaus–Toma manifolds Cohomology of OT-manifolds LCK structures on general OT manifolds Cohomology of LCK OT-manifolds LCK rank of OT manifolds Locally conformally parallel and non-parallel structures Locally conformally hyperkähler structures Locally conformally balanced structures Locally conformally parallel G2, Spin(7) and Spin(9) structures Notes Open questions Existence of LCK structures LCK structures on complex manifolds Existence of LCK potential and Vaisman structures Complex geometry of LCK manifolds Hodge theory on LCK manifolds Bimeromorphic geometry of LCK manifolds Complex subvarieties in LCK manifolds Sasakian and Vaisman manifolds Vaisman manifolds Sasakian manifolds LCK manifolds with potential Extremal metrics on LCK manifolds LCHK and holomorphic symplectic structures LCHK structures Locally conformally holomorphic symplectic structures Holomorphic Poisson structures Riemannian geometry of LCK manifolds Curvature of Vaisman manifolds Special Hermitian metrics on LCK manifolds LCK reduction and LCS geometry The Lee cone of taming LCS structures Twisted Hamiltonian action, LCS reduction and toric Vaisman geometry Hopf manifolds Foliations on LCK manifolds Logarithmic foliations on LCK manifolds with potential Flat affine structures on LCK manifolds Bibliography Subject Index Name Index