دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Arash Kheradvar
سری:
ISBN (شابک) : 0128146613, 9780128146613
ناشر: Academic Press
سال نشر: 2019
تعداد صفحات: 401
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 33 مگابایت
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Principles of Heart Valve Engineering به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب اصول مهندسی دریچه قلب نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
اصول مهندسی دریچه قلب اولین منبع جامع برای مهندسی دریچه قلب است که طیف گسترده ای از موضوعات از جمله زیست شناسی، اپیدمیولوژی، تصویربرداری و پزشکی قلب و عروق را پوشش می دهد. بر روی دریچهها، روشهای درمانی و چگونگی ایجاد دریچههای مصنوعی ایمنتر و بادوامتر تمرکز دارد. این کتاب برای مخاطبان بین رشتهای مناسب است، با مشارکت مهندسان زیستی و متخصصان قلب که شامل پوشش دریچهای و پیشرفتهای بالقوه آینده است. این کتاب فرصتی را برای مهندسین زیستی فراهم می کند تا همه موضوعات مربوط به مهندسی دریچه قلب را در یک کتاب که توسط متخصصان موضوع نوشته شده است، مطالعه کنند.
Principles of Heart Valve Engineering is the first comprehensive resource for heart valve engineering that covers a wide range of topics, including biology, epidemiology, imaging and cardiovascular medicine. It focuses on valves, therapies, and how to develop safer and more durable artificial valves. The book is suitable for an interdisciplinary audience, with contributions from bioengineers and cardiologists that includes coverage of valvular and potential future developments. This book provides an opportunity for bioengineers to study all topics relating to heart valve engineering in a single book as written by subject matter experts.
Cover Principles of Heart Valve Engineering Copyright Dedication Contributors Preface 1 - Clinical anatomy and embryology of heart valves 1.1 Atrioventricular valves 1.1.1 Embryology 1.1.2 Morphology 1.1.3 Histology 1.2 Semilunar valves 1.2.1 Embryology 1.2.2 Morphology 1.2.3 Histology 1.3 Epigenetic factors in heart valve formation References 2 - Heart valves\' mechanobiology 2.1 Introduction 2.2 Valvular interstitial cells 2.2.1 Valvular interstitial cell phenotypes 2.2.2 Influence of environmental mechanics 2.2.3 Influence of sex and age 2.3 Cell signaling and microenvironment 2.3.1 Tumor necrosis factor alpha 2.3.2 Transforming growth factor beta 2.3.3 Nitric oxide 2.3.4 Substrate composition 2.3.5 Microenvironmental mechanics and geometry 2.4 Role of extracellular matrix in heart valve biomechanics 2.5 Extracellular matrix remodeling in heart valve disease 2.5.1 Calcific aortic valve disease 2.5.2 Mitral valve regurgitation 2.6 Mechanobiology considerations for tissue engineering atrioventricular and semilunar valves 2.6.1 Tissue engineered heart valve replacements 2.6.2 Innovative in vitro models 2.7 Future directions References 3 - Epidemiology of heart valve disease 3.1 Introduction 3.1.1 Acute rheumatic fever as a precursor to rheumatic heart disease 3.2 Epidemiology of heart valve disease in developed regions 3.2.1 Aortic stenosis 3.2.2 Aortic regurgitation 3.2.3 Mitral stenosis 3.2.4 Mitral regurgitation 3.2.5 Right-sided valvular heart disease 3.2.6 Infective endocarditis 3.3 Epidemiology of heart valve disease in developing regions 3.4 Epidemiology of congenital heart valve disease References Further reading 4 - Surgical heart valves 4.1 Introduction: history of surgical heart valves 4.2 Mechanical valves 4.2.1 Mechanical aortic valves 4.2.2 Mitral position 4.2.3 Other positions 4.2.4 Need for anticoagulation 4.2.5 Evaluation techniques 4.3 Bioprosthetic valves 4.3.1 Aortic bioprosthetic valves 4.3.1.1 Porcine aortic xenografts 4.3.1.2 Bovine pericardium 4.3.1.3 Sutureless bioprostheses 4.3.1.4 Outlook for bioprosthetic valves 4.3.2 Other locations 4.3.2.1 Mitral position 4.3.2.2 Pulmonary position 4.3.2.3 Tricuspid position 4.3.3 Longevity issues for bioprosthetic valves 4.3.4 Summary 4.4 Prosthetic heart valve selection and development 4.5 Unmet clinical needs and future areas of development References 5 - Transcatheter heart valves 5.1 History of transcatheter heart valves 5.2 Transcatheter aortic valves 5.2.1 Transfemoral approach 5.2.2 Alternative access 5.2.3 Valve design principles 5.2.4 Long-term outcomes and durability concerns 5.2.5 Delivery systems 5.3 Transcatheter mitral valve repair and replacement 5.3.1 Mitral valve apparatus function 5.3.2 TMVR and TMVr technologies 5.3.2.1 TMVr\'s leaflet technologies 5.3.2.2 TMVr – chordal implantation 5.3.2.3 TMVr – annuloplasty 5.3.2.4 TMVr – ventricular reshaping 5.3.2.5 TMVR systems 5.4 Pediatric transcatheter heart valves References 6 - Tissue-engineered heart valves 6.1 Introduction 6.2 The living heart valve—taking inspiration from nature 6.3 Heart valve tissue engineering paradigms 6.3.1 In vitro heart valve tissue engineering 6.3.2 In situ heart valve tissue engineering 6.4 The cellular players in heart valve tissue engineering 6.4.1 Cell sources for in vitro heart valve tissue engineering 6.4.2 In situ cellularization 6.5 Scaffolds for heart valve tissue engineering 6.5.1 Natural scaffolds 6.5.1.1 Natural polymer–based hydrogels 6.5.1.2 Extracellular matrix–based scaffolds 6.5.1.2.1 Decellularized native tissues 6.5.1.2.2 Decellularized tissue-engineered valves 6.5.2 Synthetic scaffolds and hybrids 6.5.2.1 Materials and functionalization 6.5.2.2 Scaffold fabrication techniques 6.5.2.3 Preseeded scaffolds 6.5.2.4 Acellular resorbable scaffolds for in situ heart valve tissue engineering 6.5.3 Scaffold-free approaches 6.6 Bioreactors 6.6.1 Whole-valve bioreactors for culturing and testing 6.6.2 Real time noninvasive and nondestructive monitoring in bioreactors 6.7 Computational modeling 6.7.1 Predicting collagen remodeling in tissue-engineered heart valves 6.7.2 Predicting growth through computational modeling 6.7.3 Aiding physical design via computer modeling 6.8 Minimally invasive delivery of tissue-engineered heart valves 6.9 Perspective on current challenges for heart valve tissue engineering 6.9.1 Inducing elastogenesis 6.9.2 Harnessing the host response and tissue homeostasis 6.9.3 Mechanistic approaches and stratification References 7 - Computer modeling and simulation of heart valve function and intervention 7.1 Introduction 7.2 Governing equations 7.3 Structural modeling 7.3.1 Geometrical modeling 7.3.1.1 Manual reconstruction of aortic valve geometries 7.3.1.2 Automatic valve estimation from clinical cardiac images 7.3.1.3 Importance of mesh correspondence in valve geometry reconstruction 7.3.2 Tissue properties 7.3.2.1 Experimental characterization of valve tissue properties 7.3.2.2 Constitutive models of heart valve tissues 7.3.2.3 Loading boundary conditions 7.3.3 Computational structural analysis of heart valve function and intervention 7.3.3.1 Modeling native aortic valves 7.3.3.2 Modeling bioprosthetic heart valves 7.4 Fluid–structure interaction 7.4.1 FSI models of heart valve dynamics 7.4.2 In vitro models 7.4.3 Subject-specific models 7.5 Conclusions and future outlook Acknowledgments References 8 - In vitro experimental methods for assessment of prosthetic heart valves 8.1 Hydrodynamic evaluation 8.1.1 Steady flow testing 8.1.2 Pulsatile flow systems 8.2 Particle image velocimetry 8.3 Accelerated wear testing 8.4 Structural assessment 8.5 Structural component fatigue assessment 8.6 Corrosion assessment 8.7 Summary References 9 - Transvalvular flow 9.1 Fluid dynamics of transmitral flow 9.1.1 Transvalvular pressure drop 9.1.2 Transmitral vortex formation 9.1.3 Vortex formation time index 9.1.4 Diastolic dysfunction and transmitral flow 9.1.5 Mitral annulus recoil 9.1.6 Consequences of mitral valve dysfunction 9.1.7 Flow through the mechanical valves 9.2 Fluid dynamics of the aortic valve 9.2.1 Vortex formation in aortic sinus 9.2.2 Bicuspid aortic valve disease 9.2.3 Fluid dynamics of paravalvular leak 9.2.4 Flow through the aortic protheses 9.3 Fluid dynamics of the valves of the right heart References 10 - Heart valve leaflet preparation 10.1 Alternative fixation chemistries 10.2 Anticalcification strategies 10.3 No fixation 10.4 Alpha-gal removal 10.5 Different types of tissues 10.6 Physical treatments 10.7 Testing the efficacy of a tissue and its chemical treatments 10.8 Stentless valves 10.9 Surgeon factors 10.10 Unmet needs and opportunities References 11 - Heart valve calcification 11.1 Native valves 11.1.1 Aortic valve 11.1.2 Mitral valve 11.2 Bioprosthetic valves 11.2.1 Surgical valve replacement 11.2.2 Transcatheter intervention 11.3 Structure and pathology of aortic valves 11.3.1 Aortic valve anatomy 11.3.2 Biomechanical environment 11.3.3 CAVD pathology 11.3.4 CAVD mechanism 11.3.5 Hyperlipidemia models 11.3.6 Lipoprotein(a) 11.3.7 Inflammation 11.3.8 Molecular regulators 11.3.9 Bone morphogenetic protein-2 11.3.10 Notch 1 11.3.11 Autotaxin 11.3.12 Serotonin (5-hydroxytryptamine) 11.3.13 Von Willebrand factor 11.3.14 Cyclooxygenase activity 11.3.15 Wnt 11.3.16 Other factors References 12 - Immunological considerations for heart valve replacements 12.1 Introduction 12.2 Heart valve transplants 12.3 Mechanical heart valves 12.4 Tissue valves 12.4.1 Bioprosthetic heart valves 12.4.2 Tissue-engineered heart valves 12.5 Transcatheter valves 12.6 Conclusions and future directions References 13 - Polymeric heart valves 13.1 Introduction 13.1.1 Scope 13.1.2 Need 13.2 History of polymeric valves 13.3 Design considerations and challenges 13.3.1 Material 13.3.1.1 Polysiloxanes 13.3.1.2 Polytetrafluoroethylene (PTFE)/expanded PTFE 13.3.1.3 Polyurethanes 13.3.1.4 Polyvinyl alcohol 13.3.1.5 Linear low-density polyethylene 13.3.1.6 Poly(styrene-block-isobutylene-block-styrene) 13.3.2 Surface modifications 13.3.2.1 Geometry 13.3.2.2 Manufacturing 13.3.3 Dip casting 13.3.4 Film fabrication 13.3.5 Cavity and injection molding 13.3.6 Three-dimensional printing 13.4 Investigational valves 13.5 Summary and conclusions References 14 - Regulatory considerations 14.1 The sins of the father 14.2 The need for documented procedures 14.3 Risk versus reward 14.4 Risk management 14.5 Objective performance criteria 14.6 Making sausages 14.7 Failure of preclinical models 14.8 A case study 14.9 Closing References APPENDIX. Bernoulli’s equation, significance, and limitations A.1 Introduction A.2 Derivation of the generalized Bernoulli equation A.3 Generalized form of the Bernoulli equation for cardiovascular biofluid dynamics A.4 Bernoulli equation and pressure drop calculation A.5 Approximation of the Bernoulli convective term A.6 Approximation of the Bernoulli viscose term A.7 Simplified versions of the Bernoulli equation A.8 Conclusion References Index A B C D E F G H I J K L M N O P Q R S T U V W X Z Back Cover