ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Principles of Foundation Engineering, 9th Edition, SI Edition

دانلود کتاب اصول مهندسی بنیاد ، چاپ 9 ، نسخه SI

Principles of Foundation Engineering, 9th Edition, SI Edition

مشخصات کتاب

Principles of Foundation Engineering, 9th Edition, SI Edition

ویرایش:  
نویسندگان:   
سری:  
ISBN (شابک) : 2017956526, 9781337705035 
ناشر: Cengage Learning, Inc. 
سال نشر: 2019 
تعداد صفحات: 884 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 97 مگابایت 

قیمت کتاب (تومان) : 46,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 3


در صورت تبدیل فایل کتاب Principles of Foundation Engineering, 9th Edition, SI Edition به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب اصول مهندسی بنیاد ، چاپ 9 ، نسخه SI نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی درمورد کتاب به خارجی



فهرست مطالب

Cover
Contents
Preface
MindTap Online Course
Preface to the SI Edition
About the Authors
Chapter 1: Introduction
	1.1 Geotechnical Engineering
	1.2 Foundation Engineering
	1.3 Soil Exploration
	1.4 Ground Improvement
	1.5 Solution Methods
	1.6 Numerical Modeling
	1.7 Empiricism
	1.8 Literature
	References
Part 1: Geotechnical Properties and Soil Exploration
	Chapter 2: Geotechnical Properties of Soil
		2.1 Introduction
		2.2 Grain-Size Distribution
		2.3 Size Limits for Soil
		2.4 Weight-Volume Relationships
		2.5 Relative Density
		2.6 Atterberg Limits
		2.7 Liquidity Index
		2.8 Activity
		2.9 Soil Classification Systems
		2.10 Hydraulic Conductivity of Soil
		2.11 Steady-State Seepage
		2.12 Effective Stress
		2.13 Consolidation
		2.14 Calculation of Primary Consolidation Settlement
		2.15 Time Rate of Consolidation
		2.16 Range of Coefficient of Consolidation, cv
		2.17 Degree of Consolidation under Ramp Loading
		2.18 Shear Strength
		2.19 Unconfined Compression Test
		2.20 Comments on Friction Angle, Phi'
		2.21 Correlations for Undrained Shear Strength, cu
		2.22 Selection of Shear Strength Parameters
		2.23 Sensitivity
		2.24 Summary
		Problems
		References
	Chapter 3: Natural Soil Deposits and Subsoil Exploration
		3.1 Introduction
		3.2 Soil Origin
		3.3 Residual Soil
		3.4 Gravity-Transported Soil
		3.5 Alluvial Deposits
		3.6 Lacustrine Deposits
		3.7 Glacial Deposits
		3.8 Aeolian Soil Deposits
		3.9 Organic Soil
		3.10 Some Local Terms for Soil
		3.11 Purpose of Subsurface Exploration
		3.12 Subsurface Exploration Program
		3.13 Exploratory Borings in the Field
		3.14 Procedures for Sampling Soil
		3.15 Split-Spoon Sampling and Standard Penetration Test
		3.16 Sampling with a Scraper Bucket
		3.17 Sampling with a Thin-Walled Tube
		3.18 Sampling with a Piston Sampler
		3.19 Observation of Water Tables
		3.20 Vane Shear Test
		3.21 Cone Penetration Test
		3.22 Pressuremeter Test (PMT)
		3.23 Dilatometer Test
		3.24 Iowa Borehole Shear Test
		3.25 K0 Stepped-Blade Test
		3.26 Coring of Rocks
		3.27 Preparation of Boring Logs
		3.28 Geophysical Exploration
		3.29 Subsoil Exploration Report
		3.30 Summary
		Problems
		References
	Chapter 4: Instrumentation and Monitoring in Geotechnical Engineering
		4.1 Introduction
		4.2 Need for Instrumentation
		4.3 Geotechnical Measurements
		4.4 Geotechnical Instruments
		4.5 Planning an Instrumentation Program
		4.6 Typical Instrumentation Projects
		4.7 Summary
		References
Part 2: Soil Improvement
	Chapter 5: Soil Improvement and Ground Modification
		5.1 Introduction
		5.2 General Principles of Compaction
		5.3 Empirical Relationships for Compaction
		5.4 Field Compaction
		5.5 Compaction Control for Clay Hydraulic Barriers
		5.6 Vibroflotation
		5.7 Blasting
		5.8 Precompression
		5.9 Sand Drains
		5.10 Prefabricated Vertical Drains
		5.11 Lime Stabilization
		5.12 Cement Stabilization
		5.13 Fly-Ash Stabilization
		5.14 Stone Columns
		5.15 Sand Compaction Piles
		5.16 Dynamic Compaction
		5.17 Jet Grouting
		5.18 Deep Mixing
		5.19 Summary
		Problems
		References
Part 3: Foundation Analysis
	Chapter 6: Shallow Foundations: Ultimate Bearing Capacity
		6.1 Introduction
		6.2 General Concept
		6.3 Terzaghi's Bearing Capacity Theory
		6.4 Factor of Safety
		6.5 Modification of Bearing Capacity Equations for Water Table
		6.6 The General Bearing Capacity Equation
		6.7 Other Solutions for Bearing Capacity, Shape, and Depth Factors
		6.8 Case Studies on Ultimate Bearing Capacity
		6.9 Effect of Soil Compressibility
		6.10 Eccentrically Loaded Foundations
		6.11 Ultimate Bearing Capacity under Eccentric Loading-One-Way Eccentricity
		6.12 Bearing Capacity-Two-Way Eccentricity
		6.13 A Simple Approach for Bearing Capacity with Two-Way Eccentricity
		6.14 Bearing Capacity of a Continuous Foundation Subjected to Eccentrically Inclined Loading
		6.15 Plane-Strain Correction of Friction Angle
		6.16 Summary
		Problems
		References
	Chapter 7: Ultimate Bearing Capacity of Shallow Foundations: Special Cases
		7.1 Introduction
		7.2 Foundation Supported by a Soil with a Rigid Base at Shallow Depth
		7.3 Foundations on Layered Clay
		7.4 Bearing Capacity of Layered Soil: Stronger Soil Underlain by Weaker Soil (c' - Phi' Soil)
		7.5 Bearing Capacity of Layered Soil: Weaker Soil Underlain by Stronger Soil
		7.6 Continuous Foundation on Weak Clay with a Granular Trench
		7.7 Closely Spaced Foundations-Effect on Ultimate Bearing Capacity
		7.8 Bearing Capacity of Foundations on Top of a Slope
		7.9 Bearing Capacity of Foundations on a Slope
		7.10 Seismic Bearing Capacity and Settlement in Granular Soil
		7.11 Foundations on Rock
		7.12 Ultimate Bearing Capacity of Wedge-Shaped Foundations
		7.13 Uplift Capacity of Foundations
		7.14 Summary
		Problems
		References
	Chapter 8: Vertical Stress Increase in Soil
		8.1 Introduction
		8.2 Stress Due to a Concentrated Load
		8.3 Stress Due to a Circularly Loaded Area
		8.4 Stress Due to a Line Load
		8.5 Stress below a Vertical Strip Load of Finite Width and Infinite Length
		8.6 Stress below a Horizontal Strip Load of Finite Width and Infinite Length
		8.7 Stress below a Rectangular Area
		8.8 Stress Isobars
		8.9 Average Vertical Stress Increase Due to a Rectangularly Loaded Area
		8.10 Average Vertical Stress Increase below the Center of a Circularly Loaded Area
		8.11 Stress Increase under an Embankment
		8.12 Westergaard's Solution for Vertical Stress Due to a Point Load
		8.13 Stress Distribution for Westergaard Material
		8.14 Summary
		Problems
		References
	Chapter 9: Settlement of Shallow Foundations
		9.1 Introduction
		9.2 Elastic Settlement of Shallow Foundation on Saturated Clay (Micro s = 0.5)
		9.3 Settlement Based on the Theory of Elasticity
		9.4 Improved Equation for Elastic Settlement
		9.5 Settlement of Sandy Soil: Use of Strain Influence Factor
		9.6 Settlement of Foundation on Sand Based on Standard Penetration Resistance
		9.7 Settlement Considering Soil Stiffness Variation with Stress Level
		9.8 Settlement Based on Pressuremeter Test (PMT)
		9.9 Settlement Estimation Using the L1 - L2 Method
		9.10 Effect of the Rise of Water Table on Elastic Settlement
		9.11 Primary Consolidation Settlement Relationships
		9.12 Three-Dimensional Effect on Primary Consolidation Settlement
		9.13 Settlement Due to Secondary Consolidation
		9.14 Field Load Test
		9.15 Presumptive Bearing Capacity
		9.16 Tolerable Settlement of Buildings
		9.17 Summary
		Problems
		References
	Chapter 10: Mat Foundations
		10.1 Introduction
		10.2 Combined Footings
		10.3 Common Types of Mat Foundations
		10.4 Bearing Capacity of Mat Foundations
		10.5 Differential Settlement of Mats
		10.6 Field Settlement Observations for Mat Foundations
		10.7 Compensated Foundation
		10.8 Structural Design of Mat Foundations
		10.9 Summary
		Problems
		References
	Chapter 11: Load and Resistance Factor Design (LRFD)
		11.1 Introduction
		11.2 Design Philosophy
		11.3 Allowable Stress Design (ASD)
		11.4 Limit State Design (LSD) and Partial Safety Factors
		11.5 Load and Resistance Factor Design (LRFD)
		11.6 Summary
		Problems
		References
	Chapter 12: Pile Foundations
		12.1 Introduction
		12.2 Pile Materials
		12.3 Continuous Flight Auger (CFA) Piles
		12.4 Point Bearing and Friction Piles
		12.5 Installation of Piles
		12.6 Pile Driving
		12.7 Load Transfer Mechanism
		12.8 Equations for Estimating Pile Capacity
		12.9 Meyerhof's Method for Estimating Qp
		12.10 Vesic's Method for Estimating Qp
		12.11 Coyle and Castello's Method for Estimating Qp in Sand
		12.12 Correlations for Calculating Qp with SPT and CPT Results in Granular Soil
		12.13 Frictional Resistance (Qs) in Sand
		12.14 Frictional (Skin) Resistance in Clay
		12.15 Ultimate Capacity of Continuous Flight Auger Pile
		12.16 Point Bearing Capacity of Piles Resting on Rock
		12.17 Pile Load Tests
		12.18 Elastic Settlement of Piles
		12.19 Laterally Loaded Piles
		12.20 Pile-Driving Formulas
		12.21 Pile Capacity for Vibration-Driven Piles
		12.22 Wave Equation Analysis
		12.23 Negative Skin Friction
		12.24 Group Efficiency
		12.25 Ultimate Capacity of Group Piles in Saturated Clay
		12.26 Elastic Settlement of Group Piles
		12.27 Consolidation Settlement of Group Piles
		12.28 Piles in Rock
		12.29 Summary
		Problems
		References
	Chapter 13: Drilled-Shaft Foundations
		13.1 Introduction
		13.2 Types of Drilled Shafts
		13.3 Construction Procedures
		13.4 Other Design Considerations
		13.5 Load Transfer Mechanism
		13.6 Estimation of Load-Bearing Capacity
		13.7 Load-Bearing Capacity in Granular Soil
		13.8 Load-Bearing Capacity in Granular Soil Based on Settlement
		13.9 Load-Bearing Capacity in Clay
		13.10 Load-Bearing Capacity in Clay Based on Settlement
		13.11 Settlement of Drilled Shafts at Working Load
		13.12 Lateral Load-Carrying Capacity-Characteristic Load and Moment Method
		13.13 Drilled Shafts Extending into Rock
		13.14 Summary
		Problems
		References
	Chapter 14: Piled Rafts: An Overview
		14.1 Introduction
		14.2 Load-Settlement Plots of Unpiled and Piled Rafts under Different Design Conditions
		14.3 Poulos-Davis-Randolph Simplified Design Method
		14.4 Case Study: Burj Khalifa Tower in Dubai
		14.5 Summary
		Problems
		References
	Chapter 15: Foundations on Difficult Soil
		15.1 Introduction
		15.2 Definition and Types of Collapsible Soil
		15.3 Physical Parameters for Identification
		15.4 Procedure for Calculating Collapse Settlement
		15.5 Foundations in Soil Not Susceptible to Wetting
		15.6 Foundations in Soil Susceptible to Wetting
		15.7 General Nature of Expansive Soil
		15.8 Unrestrained Swell Test
		15.9 Swelling Pressure Test
		15.10 Classification of Expansive Soil on the Basis of Index Tests
		15.11 Foundation Considerations for Expansive Soil
		15.12 Construction on Expansive Soil
		15.13 General Nature of Sanitary Landfills
		15.14 Settlement of Sanitary Landfills
		15.15 Summary
		Problems
		References
Part 4: Lateral Earth Pressure and Earth Retaining Structures
	Chapter 16: Lateral Earth Pressure
		16.1 Introduction
		16.2 Lateral Earth Pressure at Rest
		16.3 Rankine Active Earth Pressure
		16.4 A Generalized Case for Rankine Active Pressure-Granular Backfill
		16.5 Generalized Case for Rankine Seismic Active Earth Pressure-Granular Backfill
		16.6 Rankine Active Pressure with Vertical Wall Backface and Inclined c' - Phi' Soil Backfill
		16.7 Coulomb's Active Earth Pressure
		16.8 Lateral Earth Pressure Due to Surcharge
		16.9 Active Earth Pressure for Earthquake Conditions-Granular Backfill
		16.10 Active Earth Pressure for Earthquake Condition (Vertical Backface of Wall and c' - Phi' Backfill)
		16.11 Rankine Passive Earth Pressure
		16.12 Rankine Passive Earth Pressure-Vertical Backface and Inclined Backfill
		16.13 Coulomb's Passive Earth Pressure
		16.14 Comments on the Failure Surface Assumption for Coulomb's Pressure Calculations
		16.15 Caquot and Kerisel Solution for Passive Earth Pressure (Granular Backfill)
		16.16 Solution for Passive Earth Pressure by the Lower Bound Theorem of Plasticity (Granular Backfill)
		16.17 Passive Force on Walls with Earthquake Forces
		16.18 Summary
		Problems
		References
	Chapter 17: Retaining Walls
		17.1 Introduction
		17.2 Proportioning Retaining Walls
		17.3 Application of Lateral Earth Pressure Theories to Design
		17.4 Stability of Retaining Walls
		17.5 Check for Overturning
		17.6 Check for Sliding along the Base
		17.7 Check for Bearing Capacity Failure
		17.8 Construction Joints and Drainage from Backfill
		17.9 Comments on Design of Retaining Walls and a Case Study
		17.10 Gravity Retaining-Wall Design for Earthquake Conditions
		17.11 Soil Reinforcement
		17.12 Considerations in Soil Reinforcement
		17.13 General Design Considerations
		17.14 Retaining Walls with Metallic Strip Reinforcement
		17.15 Step-by-Step-Design Procedure Using Metallic Strip Reinforcement
		17.16 Retaining Walls with Geotextile Reinforcement
		17.17 Retaining Walls with Geogrid Reinforcement-General
		17.18 Design Procedure for Geogrid-Reinforced Retaining Wall
		17.19 Summary
		Problems
		References
	Chapter 18: Sheet-Pile Walls
		18.1 Introduction
		18.2 Construction Methods
		18.3 Cantilever Sheet-Pile Walls
		18.4 Cantilever Sheet Piling Penetrating Sandy Soil
		18.5 Special Cases for Cantilever Walls Penetrating a Sandy Soil
		18.6 Cantilever Sheet Piling Penetrating Clay
		18.7 Special Cases for Cantilever Walls Penetrating Clay
		18.8 Cantilever Sheet Piles Penetrating Sandy Soil-A Simplified Approach
		18.9 Anchored Sheet-Pile Walls
		18.10 Free Earth Support Method for Penetration of Sandy Soil-A Simplified Approach
		18.11 Free Earth Support Method for Penetration of Sandy Soil-Net Lateral Pressure Method
		18.12 Design Charts for Free Earth Support Method (Penetration into Sandy Soil)
		18.13 Moment Reduction for Anchored Sheet-Pile Walls Penetrating into Sand
		18.14 Computational Pressure Diagram Method for Penetration into Sandy Soil
		18.15 Field Observations for Anchor Sheet-Pile Walls
		18.16 Free Earth Support Method for Penetration of Clay
		18.17 Anchors
		18.18 Holding Capacity of Deadman Anchors
		18.19 Holding Capacity of Anchor Plates in Sand
		18.20 Holding Capacity of Anchor Plates in Clay (Phi = 0 Condition)
		18.21 Ultimate Resistance of Tiebacks
		18.22 Summary
		Problems
		References
	Chapter 19: Braced Cuts
		19.1 Introduction
		19.2 Braced-Cut Analysis Based on General Wedge Theory
		19.3 Pressure Envelope for Braced-Cut Design
		19.4 Pressure Envelope for Cuts in Layered Soil
		19.5 Design of Various Components of a Braced Cut
		19.6 Case Studies of Braced Cuts
		19.7 Bottom Heave of a Cut in Clay
		19.8 Stability of the Bottom of a Cut in Sand
		19.9 Lateral Yielding of Sheet Piles and Ground Settlement
		19.10 Summary
		Problems
		References
Answers to Problems
Index




نظرات کاربران