ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Principles of Engineering Thermodynamics: SI Version

دانلود کتاب اصول ترمودینامیک مهندسی: نسخه SI

Principles of Engineering Thermodynamics: SI Version

مشخصات کتاب

Principles of Engineering Thermodynamics: SI Version

ویرایش: [8 ed.] 
نویسندگان: , , ,   
سری:  
ISBN (شابک) : 9781118960882 
ناشر: John Wiley & Sons Singapore Pte. Ltd. 
سال نشر: 2015 
تعداد صفحات: 893 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 17 Mb 

قیمت کتاب (تومان) : 48,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 1


در صورت تبدیل فایل کتاب Principles of Engineering Thermodynamics: SI Version به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب اصول ترمودینامیک مهندسی: نسخه SI نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب اصول ترمودینامیک مهندسی: نسخه SI

این متن سنت خود را برای تعیین استاندارد برای آموزش دانش آموزان ادامه می دهد که چگونه حلال مشکل موثر باشند. اکنون در هشتمین ویرایش خود، این متن پیشرو بازار بر تخصص آموزشی جمعی نویسندگان و همچنین روش‌های امضایی که به نسل‌های کامل مهندسان در سراسر جهان آموزش داده است، تأکید می‌کند. در سراسر متن برنامه‌های کاربردی دنیای واقعی وجود دارد که بر ارتباط اصول ترمودینامیک با برخی از بحرانی‌ترین مسائل و مسائل امروزی، از جمله پوشش انبوهی از موضوعات مرتبط با انرژی و محیط‌زیست، مهندسی زیست‌پزشکی/زیست، و فناوری‌های نوظهور تأکید می‌کنند.


توضیحاتی درمورد کتاب به خارجی

This text continues its tradition of setting the standard for teaching students how to be effective problem solvers. Now in its eighth edition, this market-leading text emphasizes the authors' collective teaching expertise as well as the signature methodologies that have taught entire generations of engineers worldwide. Integrated throughout the text are real-world applications that emphasize the relevance of thermodynamics principles to some of the most critical problems and issues of today, including a wealth of coverage of topics related to energy and the environment, biomedical/bioengineering, and emerging technologies.



فهرست مطالب

Cover
Title Page
Copyright Page
Preface
Acknowledgments
Contents
1 Getting Started: Introductory Concepts and Definitions
	1.1 Using Thermodynamics
	1.2 Defining Systems
		1.2.1 Closed Systems
		1.2.2 Control Volumes
		1.2.3 Selecting the System Boundary
	1.3 Describing Systems and Their Behavior
		1.3.1 Macroscopic and Microscopic Views of Thermodynamics
		1.3.2 Property, State, and Process
		1.3.3 Extensive and Intensive Properties
		1.3.4 Equilibrium
	1.4 Measuring Mass, Length, Time, and Force
		1.4.1 SI Units
		1.4.2 English Engineering Units
	1.5 Specific Volume
	1.6 Pressure
		1.6.1 Pressure Measurement
		1.6.2 Buoyancy
		1.6.3 Pressure Units
	1.7 Temperature
		1.7.1 Thermometers
		1.7.2 Kelvin Temperature Scale
		1.7.3 Celsius Scale
	1.8 Engineering Design and Analysis
		1.8.1 Design
		1.8.2 Analysis
	1.9 Methodology for Solving Thermodynamics Problems
	Chapter Summary and Study Guide
2 Energy and the First Law of Thermodynamics
	2.1 Reviewing Mechanical Concepts of Energy
		2.1.1 Work and Kinetic Energy
		2.1.2 Potential Energy
		2.1.3 Units for Energy
		2.1.4 Conservation of Energy in Mechanics
		2.1.5 Closing Comment
	2.2 Broadening Our Understanding of Work
		2.2.1 Sign Convention and Notation
		2.2.2 Power
		2.2.3 Modeling Expansion or Compression Work
		2.2.4 Expansion or Compression Work in Actual Processes
		2.2.5 Expansion or Compression Work in Quasiequilibrium Processes
		2.2.6 Further Examples of Work
		2.2.7 Further Examples of Work in Quasiequilibrium Processes
		2.2.8 Generalized Forces and Displacements
	2.3 Broadening Our Understanding of Energy
	2.4 Energy Transfer by Heat
		2.4.1 Sign Convention, Notation, and Heat Transfer Rate
		2.4.2 Heat Transfer Modes
		2.4.3 Closing Comments
	2.5 Energy Accounting: Energy Balance for Closed Systems
		2.5.1 Important Aspects of the Energy Balance
		2.5.2 Using the Energy Balance: Processes of Closed Systems
		2.5.3 Using the Energy Rate Balance: Steady-State Operation
		2.5.4 Using the Energy Rate Balance: Transient Operation
	2.6 Energy Analysis of Cycles
		2.6.1 Cycle Energy Balance
		2.6.2 Power Cycles
		2.6.3 Refrigeration and Heat Pump Cycles
	2.7 Energy Storage
		2.7.1 Overview
		2.7.2 Storage Technologies
	Chapter Summary and Study Guide
3 Evaluating Properties
	3.1 Getting Started
		3.1.1 Phase and Pure Substance
		3.1.2 Fixing the State
	Evaluating Properties: General Considerations
	3.2 p–????–T Relation
		3.2.1 p–????–T Surface
		3.2.2 Projections of the p–????–T Surface
	3.3 Studying Phase Change
	3.4 Retrieving Thermodynamic Properties
	3.5 Evaluating Pressure, Specific Volume, and Temperature
		3.5.1 Vapor and Liquid Tables
		3.5.2 Saturation Tables
	3.6 Evaluating Specific Internal Energy and Enthalpy
		3.6.1 Introducing Enthalpy
		3.6.2 Retrieving u and h Data
		3.6.3 Reference States and Reference Values
	3.7 Evaluating Properties Using Computer Software
	3.8 Applying the Energy Balance Using Property Tables and Software
		3.8.1 Using Property Tables
		3.8.2 Using Software
	3.9 Introducing Specific Heats C???? and Cp
	3.10 Evaluating Properties of Liquids and Solids
		3.10.1 Approximations for Liquids Using Saturated Liquid Data
		3.10.2 Incompressible Substance Model
	3.11 Generalized Compressibility Chart
		3.11.1 Universal Gas Constant, R
		3.11.2 Compressibility Factor, Z
		3.11.3 Generalized Compressibility Data, Z Chart
		3.11.4 Equations of State
	Evaluating Properties Using the Ideal Gas Model
	3.12 Introducing the Ideal Gas Model
		3.12.1 Ideal Gas Equation of State
		3.12.2 Ideal Gas Model
		3.12.3 Microscopic Interpretation
	3.13 Internal Energy, Enthalpy, and Specific Heats of Ideal Gases
		3.13.1 ∆u, ∆h, c????,, and cp Relations
		3.13.2 Using Specific Heat Functions
		3.14 Applying the Energy Balance Using Ideal Gas Tables, Constant Specific Heats, and Software
		3.14.1 Using Ideal Gas Tables
		3.14.2 Using Constant Specific Heats
		3.14.3 Using Computer Software
	3.15 Polytropic Process Relations
	Chapter Summary and Study Guide
4 Control Volume Analysis Using Energy
	4.1 Conservation of Mass for a Control Volume
		4.1.1 Developing the Mass Rate Balance
		4.1.2 Evaluating the Mass Flow Rate
	4.2 Forms of the Mass Rate Balance
		4.2.1 One-Dimensional Flow Form of the Mass Rate Balance
		4.2.2 Steady-State Form of the Mass Rate Balance
		4.2.3 Integral Form of the Mass Rate Balance
	4.3 Applications of the Mass Rate Balance
		4.3.1 Steady-State Application
		4.3.2 Time-Dependent (Transient) Application
	4.4 Conservation of Energy for a Control Volume
		4.4.1 Developing the Energy Rate Balance for a Control Volume
		4.4.2 Evaluating Work for a Control Volume
		4.4.3 One-Dimensional Flow Form of the Control Volume Energy Rate Balance
		4.4.4 Integral Form of the Control Volume Energy Rate Balance
	4.5 Analyzing Control Volumes at Steady State
		4.5.1 Steady-State Forms of the Mass and Energy Rate Balances
		4.5.2 Modeling Considerations for Control Volumes at Steady State
	4.6 Nozzles and Diffusers
		4.6.1 Nozzle and Diffuser Modeling Considerations
		4.6.2 Application to a Steam Nozzle
	4.7 Turbines
		4.7.1 Steam and Gas Turbine Modeling Considerations
		4.7.2 Application to a Steam Turbine
	4.8 Compressors and Pumps
		4.8.1 Compressor and Pump Modeling Considerations
		4.8.2 Applications to an Air Compressor and a Pump System
		4.8.3 Pumped-Hydro and Compressed-Air Energy Storage
	4.9 Heat Exchangers
		4.9.1 Heat Exchanger Modeling Considerations
		4.9.2 Applications to a Power Plant Condenser and Computer Cooling
	4.10 Throttling Devices
		4.10.1 Throttling Device Modeling Considerations
		4.10.2 Using a Throttling Calorimeter to Determine Quality
	4.11 System Integration
	4.12 Transient Analysis
		4.12.1 The Mass Balance in Transient Analysis
		4.12.2 The Energy Balance in Transient Analysis
		4.12.3 Transient Analysis Applications
	Chapter Summary and Study Guide
5 The Second Law of Thermodynamics
	5.1 Introducing the Second Law
		5.1.1 Motivating the Second Law
	5.1.2 Opportunities for Developing Work
		5.1.3 Aspects of the Second Law
	5.2 Statements of the Second Law
		5.2.1 Clausius Statement of the Second Law
		5.2.2 Kelvin–Planck Statement of the Second Law
		5.2.3 Entropy Statement of the Second Law
		5.2.4 Second Law Summary
	5.3 Irreversible and Reversible Processes
		5.3.1 Irreversible Processes
		5.3.2 Demonstrating Irreversibility
		5.3.3 Reversible Processes
		5.3.4 Internally Reversible Processes
	5.4 Interpreting the Kelvin–Planck Statement
	5.5 Applying the Second Law to Thermodynamic Cycles
	5.6 Second Law Aspects of Power Cycles Interacting with Two Reservoirs
		5.6.1 Limit on Thermal Efficiency
		5.6.2 Corollaries of the Second Law for Power Cycles
	5.7 Second Law Aspects of Refrigeration and Heat Pump Cycles Interacting with Two Reservoirs
		5.7.1 Limits on Coefficients of Performance
		5.7.2 Corollaries of the Second Law for Refrigeration and Heat Pump Cycles
	5.8 The Kelvin and International Temperature Scales
		5.8.1 The Kelvin Scale
		5.8.2 The Gas Thermometer
		5.8.3 International Temperature Scale
	5.9 Maximum Performance Measures for Cycles Operating between Two Reservoirs
		5.9.1 Power Cycles
		5.9.2 Refrigeration and Heat Pump Cycles
	5.10 Carnot Cycle
		5.10.1 Carnot Power Cycle
		5.10.2 Carnot Refrigeration and Heat Pump Cycles
		5.10.3 Carnot Cycle Summary
	5.11 Clausius Inequality
	Chapter Summary and Study Guide
6 Using Entropy
	6.1 Entropy—A System Property
		6.1.1 Defining Entropy Change
		6.1.2 Evaluating Entropy
		6.1.3 Entropy and Probability
	6.2 Retrieving Entropy Data
		6.2.1 Vapor Data
		6.2.2 Saturation Data
		6.2.3 Liquid Data
		6.2.4 Computer Retrieval
		6.2.5 Using Graphical Entropy Data
	6.3 Introducing the T dS Equations
	6.4 Entropy Change of an Incompressible Substance
	6.5 Entropy Change of an Ideal Gas
		6.5.1 Using Ideal Gas Tables
		6.5.2 Assuming Constant Specific Heats
		6.5.3 Computer Retrieval
	6.6 Entropy Change in Internally Reversible Processes of Closed Systems
		6.6.1 Area Representation of Heat Transfer
		6.6.2 Carnot Cycle Application
		6.6.3 Work and Heat Transfer in an Internally Reversible Process of Water
	6.7 Entropy Balance for Closed Systems
		6.7.1 Interpreting the Closed System Entropy Balance
		6.7.2 Evaluating Entropy Production and Transfer
		6.7.3 Applications of the Closed System Entropy Balance
		6.7.4 Closed System Entropy Rate Balance
	6.8 Directionality of Processes
		6.8.1 Increase of Entropy Principle
		6.8.2 Statistical Interpretation of Entropy
	6.9 Entropy Rate Balance for Control Volumes
	6.10 Rate Balances for Control Volumes at Steady State
		6.10.1 One-Inlet, One-Exit Control Volumes at Steady State
		6.10.2 Applications of the Rate Balances to Control Volumes at Steady State
	6.11 Isentropic Processes
		6.11.1 General Considerations
		6.11.2 Using the Ideal Gas Model
		6.11.3 Illustrations: Isentropic Processes of Air
	6.12 Isentropic Efficiencies of Turbines, Nozzles, Compressors, and Pumps
		6.12.1 Isentropic Turbine Efficiency
		6.12.2 Isentropic Nozzle Efficiency
		6.12.3 Isentropic Compressor and Pump Efficiencies
	6.13 Heat Transfer and Work in Internally Reversible, Steady-State Flow Processes
		6.13.1 Heat Transfer
		6.13.2 Work
		6.13.3 Work in Polytropic Processes
	Chapter Summary and Study Guide
7 Exergy Analysis
	7.1 Introducing Exergy
	7.2 Conceptualizing Exergy
		7.2.1 Environment and Dead State
		7.2.2 Defining Exergy
	7.3 Exergy of a System
		7.3.1 Exergy Aspects
		7.3.2 Specific Exergy
		7.3.3 Exergy Change
	7.4 Closed System Exergy Balance
		7.4.1 Introducing the Closed System Exergy Balance
		7.4.2 Closed System Exergy Rate Balance
		7.4.3 Exergy Destruction and Loss
		7.4.4 Exergy Accounting
	7.5 Exergy Rate Balance for Control Volumes at Steady State
		7.5.1 Comparing Energy and Exergy for Control Volumes at Steady State
		7.5.2 Evaluating Exergy Destruction in Control Volumes at Steady State
		7.5.3 Exergy Accounting in Control Volumes at Steady State
	7.6 Exergetic (Second Law) Efficiency
		7.6.1 Matching End Use to Source
		7.6.2 Exergetic Efficiencies of Common Components
		7.6.3 Using Exergetic Efficiencies
	7.7 Thermoeconomics
		7.7.1 Costing
		7.7.2 Using Exergy in Design
		7.7.3 Exergy Costing of a Cogeneration System
	Chapter Summary and Study Guide
8 Vapor Power Systems
	Introducing Power Generation
	Considering Vapor Power Systems
	8.1 Introducing Vapor Power Plants
	8.2 The Rankine Cycle
		8.2.1 Modeling the Rankine Cycle
		8.2.2 Ideal Rankine Cycle
		8.2.3 Effects of Boiler and Condenser Pressures on the Rankine Cycle
		8.2.4 Principal Irreversibilities and Losses
	8.3 Improving Performance—Superheat, Reheat, and Supercritical
	8.4 Improving Performance—Regenerative Vapor Power Cycle
		8.4.1 Open Feedwater Heaters
		8.4.2 Closed Feedwater Heaters
		8.4.3 Multiple Feedwater Heaters
	8.5 Other Vapor Power Cycle Aspects
		8.5.1 Working Fluids
		8.5.2 Cogeneration
		8.5.3 Carbon Capture and Storage
	8.6 Case Study: Exergy Accounting of a Vapor Power Plant
	Chapter Summary and Study Guide
9 Gas Power Systems
	Considering Internal Combustion Engines
	9.1 Introducing Engine Terminology
	9.2 Air-Standard Otto Cycle
	9.3 Air-Standard Diesel Cycle
	9.4 Air-Standard Dual Cycle
	Considering Gas Turbine Power Plants
	9.5 Modeling Gas Turbine Power Plants
	9.6 Air-Standard Brayton Cycle
		9.6.1 Evaluating Principal Work and Heat Transfers
		9.6.2 Ideal Air-Standard Brayton Cycle
		9.6.3 Considering Gas Turbine Irreversibilities and Losses
	9.7 Regenerative Gas Turbines
	9.8 Regenerative Gas Turbines with Reheat and Intercooling
		9.8.1 Gas Turbines with Reheat
		9.8.2 Compression with Intercooling
		9.8.3 Reheat and Intercooling
		9.8.4 Ericsson and Stirling Cycles
	9.9 Gas Turbine–Based Combined Cycles
		9.9.1 Combined Gas Turbine–Vapor Power Cycle
		9.9.2 Cogeneration
	9.10 Integrated Gasification Combined-Cycle Power Plants
	9.11 Gas Turbines for Aircraft Propulsion
	Considering Compressible Flow through Nozzles and Diffusers
	9.12 Compressible Flow Preliminaries
		9.12.1 Momentum Equation for Steady One-Dimensional Flow
		9.12.2 Velocity of Sound and Mach Number
		9.12.3 Determining Stagnation State Properties
	9.13 Analyzing One-Dimensional Steady Flow in Nozzles and Diffusers
		9.13.1 Exploring the Effects of Area Change in Subsonic and Supersonic Flows
		9.13.2 Effects of Back Pressure on Mass Flow Rate
		9.13.3 Flow Across a Normal Shock
	9.14 Flow in Nozzles and Diffusers of Ideal Gases with Constant Specific Heats
		9.14.1 Isentropic Flow Functions
		9.14.2 Normal Shock Functions
	Chapter Summary and Study Guide
10 Refrigeration and Heat Pump Systems
	10.1 Vapor Refrigeration Systems
		10.1.1 Carnot Refrigeration Cycle
		10.1.2 Departures from the Carnot Cycle
	10.2 Analyzing Vapor-Compression Refrigeration Systems
		10.2.1 Evaluating Principal Work and Heat Transfers
		10.2.2 Performance of Ideal Vapor-Compression Systems
		10.2.3 Performance of Actual Vapor-Compression Systems
		10.2.4 The p–h Diagram
	10.3 Selecting Refrigerants
	10.4 Other Vapor-Compression Applications
		10.4.1 Cold Storage
		10.4.2 Cascade Cycles
		10.4.3 Multistage Compression with Intercooling
	10.5 Absorption Refrigeration
	10.6 Heat Pump Systems
		10.6.1 Carnot Heat Pump Cycle
		10.6.2 Vapor-Compression Heat Pumps
	10.7 Gas Refrigeration Systems
		10.7.1 Brayton Refrigeration Cycle
		10.7.2 Additional Gas Refrigeration Applications
		10.7.3 Automotive Air Conditioning Using Carbon Dioxide
	Chapter Summary and Study Guide
11 Thermodynamic Relations
	11.1 Using Equations of State
		11.1.1 Getting Started
		11.1.2 Two-Constant Equations of State
		11.1.3 Multiconstant Equations of State
	11.2 Important Mathematical Relations
	11.3 Developing Property Relations
		11.3.1 Principal Exact Differentials
		11.3.2 Property Relations from Exact Differentials
		11.3.3 Fundamental Thermodynamic Functions
	11.4 Evaluating Changes in Entropy, Internal Energy, and Enthalpy
		11.4.1 Considering Phase Change
		11.4.2 Considering Single-Phase Regions
	11.5 Other Thermodynamic Relations
		11.5.1 Volume Expansivity, Isothermal and Isentropic Compressibility
		11.5.2 Relations Involving Specific Heats
		11.5.3 Joule–Thomson Coefficient
	11.6 Constructing Tables of Thermodynamic Properties
		11.6.1 Developing Tables by Integration Using p–????–T and Specific Heat Data
		11.6.2 Developing Tables by Differentiating a Fundamental Thermodynamic Function
	11.7 Generalized Charts for Enthalpy and Entropy
	11.8 p–????–T Relations for Gas Mixtures
	11.9 Analyzing Multicomponent Systems
		11.9.1 Partial Molal Properties
		11.9.2 Chemical Potential
		11.9.3 Fundamental Thermodynamic Functions for Multicomponent Systems
		11.9.4 Fugacity
		11.9.5 Ideal Solution
		11.9.6 Chemical Potential for Ideal Solutions
	Chapter Summary and Study Guide
12 Ideal Gas Mixture and Psychrometric Applications
	Ideal Gas Mixtures: General Considerations
	12.1 Describing Mixture Composition
	12.2 Relating p, V, and T for Ideal Gas Mixtures
	12.3 Evaluating U, H, S, and Specific Heats
		12.3.1 Evaluating U and H
		12.3.2 Evaluating c???? and cp
		12.3.3 Evaluating S
		12.3.4 Working on a Mass Basis
	12.4 Analyzing Systems Involving Mixtures
		12.4.1 Mixture Processes at Constant Composition
		12.4.2 Mixing of Ideal Gases
	Psychrometric Applications
	12.5 Introducing Psychrometric Principles
		12.5.1 Moist Air
		12.5.2 Humidity Ratio, Relative Humidity, Mixture Enthalpy, and Mixture Entropy
		12.5.3 Modeling Moist Air in Equilibrium with Liquid Water
		12.5.4 Evaluating the Dew Point Temperature
		12.5.5 Evaluating Humidity Ratio Using the Adiabatic-Saturation Temperature
	12.6 Psychrometers: Measuring the Wet-Bulb and Dry-Bulb Temperatures
	12.7 Psychrometric Charts
	12.8 Analyzing Air-Conditioning Processes
		12.8.1 Applying Mass and Energy Balances to Air-Conditioning Systems
		12.8.2 Conditioning Moist Air at Constant Composition
		12.8.3 Dehumidification
		12.8.4 Humidification
		12.8.5 Evaporative Cooling
		12.8.6 Adiabatic Mixing of Two Moist Air Streams
	12.9 Cooling Towers
	Chapter Summary and Study Guide
13 Reacting Mixtures and Combustion
	Combustion Fundamentals
	13.1 Introducing Combustion
		13.1.1 Fuels
		13.1.2 Modeling Combustion Air
		13.1.3 Determining Products of Combustion
	13.1.4 Energy and Entropy Balances for Reacting Systems
	13.2 Conservation of Energy—Reacting Systems
		13.2.1 Evaluating Enthalpy for Reacting Systems
		13.2.2 Energy Balances for Reacting Systems
		13.2.3 Enthalpy of Combustion and Heating Values
	13.3 Determining the Adiabatic Flame Temperature
		13.3.1 Using Table Data
		13.3.2 Using Computer Software
		13.3.3 Closing Comments
	13.4 Fuel Cells
		13.4.1 Proton Exchange Membrane Fuel Cell
		13.4.2 Solid Oxide Fuel Cell
	13.5 Absolute Entropy and the Third Law of Thermodynamics
		13.5.1 Evaluating Entropy for Reacting Systems
		13.5.2 Entropy Balances for Reacting Systems
		13.5.3 Evaluating Gibbs Function for Reacting Systems
	Chemical Exergy
	13.6 Conceptualizing Chemical Exergy
		13.6.1 Working Equations for Chemical Exergy
		13.6.2 Evaluating Chemical Exergy for Several Cases
		13.6.3 Closing Comments
	13.7 Standard Chemical Exergy
		13.7.1 Standard Chemical Exergy of a Hydrocarbon: CaHb
		13.7.2 Standard Chemical Exergy of Other Substances
	13.8 Applying Total Exergy
		13.8.1 Calculating Total Exergy
		13.8.2 Calculating Exergetic Efficiencies of Reacting Systems
	Chapter Summary and Study Guide
14 Chemical and Phase Equilibrium
	Equilibrium Fundamentals
	14.1 Introducing Equilibrium Criteria
		14.1.1 Chemical Potential and Equilibrium
		14.1.2 Evaluating Chemical Potentials
	Chemical Equilibrium
	14.2 Equation of Reaction Equilibrium
		14.2.1 Introductory Case
		14.2.2 General Case
	14.3 Calculating Equilibrium Compositions
		14.3.1 Equilibrium Constant for Ideal Gas Mixtures
		14.3.2 Illustrations of the Calculation of Equilibrium Compositions for Reacting Ideal Gas Mixtures
		14.3.3 Equilibrium Constant for Mixtures and Solutions
	14.4 Further Examples of the Use of the Equilibrium Constant
		14.4.1 Determining Equilibrium Flame Temperature
		14.4.2 Van’t Hoff Equation
		14.4.3 Ionization
		14.4.4 Simultaneous Reactions
	Phase Equilibrium
	14.5 Equilibrium between Two Phases of a Pure Substance
	14.6 Equilibrium of Multicomponent, Multiphase Systems
		14.6.1 Chemical Potential and Phase Equilibrium
		14.6.2 Gibbs Phase Rule
	Chapter Summary and Study Guide
Appendix Tables, Figures, and Charts
Index to Tables in SI Units
Index to Figures and Charts
Index
EULA




نظرات کاربران