دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: [8 ed.] نویسندگان: Michael J. Moran, Howard N. Shapiro, Daisie D. Boettner, Margaret B. Bailey سری: ISBN (شابک) : 9781118960882 ناشر: John Wiley & Sons Singapore Pte. Ltd. سال نشر: 2015 تعداد صفحات: 893 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 17 Mb
در صورت تبدیل فایل کتاب Principles of Engineering Thermodynamics: SI Version به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب اصول ترمودینامیک مهندسی: نسخه SI نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این متن سنت خود را برای تعیین استاندارد برای آموزش دانش آموزان ادامه می دهد که چگونه حلال مشکل موثر باشند. اکنون در هشتمین ویرایش خود، این متن پیشرو بازار بر تخصص آموزشی جمعی نویسندگان و همچنین روشهای امضایی که به نسلهای کامل مهندسان در سراسر جهان آموزش داده است، تأکید میکند. در سراسر متن برنامههای کاربردی دنیای واقعی وجود دارد که بر ارتباط اصول ترمودینامیک با برخی از بحرانیترین مسائل و مسائل امروزی، از جمله پوشش انبوهی از موضوعات مرتبط با انرژی و محیطزیست، مهندسی زیستپزشکی/زیست، و فناوریهای نوظهور تأکید میکنند.
This text continues its tradition of setting the standard for teaching students how to be effective problem solvers. Now in its eighth edition, this market-leading text emphasizes the authors' collective teaching expertise as well as the signature methodologies that have taught entire generations of engineers worldwide. Integrated throughout the text are real-world applications that emphasize the relevance of thermodynamics principles to some of the most critical problems and issues of today, including a wealth of coverage of topics related to energy and the environment, biomedical/bioengineering, and emerging technologies.
Cover Title Page Copyright Page Preface Acknowledgments Contents 1 Getting Started: Introductory Concepts and Definitions 1.1 Using Thermodynamics 1.2 Defining Systems 1.2.1 Closed Systems 1.2.2 Control Volumes 1.2.3 Selecting the System Boundary 1.3 Describing Systems and Their Behavior 1.3.1 Macroscopic and Microscopic Views of Thermodynamics 1.3.2 Property, State, and Process 1.3.3 Extensive and Intensive Properties 1.3.4 Equilibrium 1.4 Measuring Mass, Length, Time, and Force 1.4.1 SI Units 1.4.2 English Engineering Units 1.5 Specific Volume 1.6 Pressure 1.6.1 Pressure Measurement 1.6.2 Buoyancy 1.6.3 Pressure Units 1.7 Temperature 1.7.1 Thermometers 1.7.2 Kelvin Temperature Scale 1.7.3 Celsius Scale 1.8 Engineering Design and Analysis 1.8.1 Design 1.8.2 Analysis 1.9 Methodology for Solving Thermodynamics Problems Chapter Summary and Study Guide 2 Energy and the First Law of Thermodynamics 2.1 Reviewing Mechanical Concepts of Energy 2.1.1 Work and Kinetic Energy 2.1.2 Potential Energy 2.1.3 Units for Energy 2.1.4 Conservation of Energy in Mechanics 2.1.5 Closing Comment 2.2 Broadening Our Understanding of Work 2.2.1 Sign Convention and Notation 2.2.2 Power 2.2.3 Modeling Expansion or Compression Work 2.2.4 Expansion or Compression Work in Actual Processes 2.2.5 Expansion or Compression Work in Quasiequilibrium Processes 2.2.6 Further Examples of Work 2.2.7 Further Examples of Work in Quasiequilibrium Processes 2.2.8 Generalized Forces and Displacements 2.3 Broadening Our Understanding of Energy 2.4 Energy Transfer by Heat 2.4.1 Sign Convention, Notation, and Heat Transfer Rate 2.4.2 Heat Transfer Modes 2.4.3 Closing Comments 2.5 Energy Accounting: Energy Balance for Closed Systems 2.5.1 Important Aspects of the Energy Balance 2.5.2 Using the Energy Balance: Processes of Closed Systems 2.5.3 Using the Energy Rate Balance: Steady-State Operation 2.5.4 Using the Energy Rate Balance: Transient Operation 2.6 Energy Analysis of Cycles 2.6.1 Cycle Energy Balance 2.6.2 Power Cycles 2.6.3 Refrigeration and Heat Pump Cycles 2.7 Energy Storage 2.7.1 Overview 2.7.2 Storage Technologies Chapter Summary and Study Guide 3 Evaluating Properties 3.1 Getting Started 3.1.1 Phase and Pure Substance 3.1.2 Fixing the State Evaluating Properties: General Considerations 3.2 p–????–T Relation 3.2.1 p–????–T Surface 3.2.2 Projections of the p–????–T Surface 3.3 Studying Phase Change 3.4 Retrieving Thermodynamic Properties 3.5 Evaluating Pressure, Specific Volume, and Temperature 3.5.1 Vapor and Liquid Tables 3.5.2 Saturation Tables 3.6 Evaluating Specific Internal Energy and Enthalpy 3.6.1 Introducing Enthalpy 3.6.2 Retrieving u and h Data 3.6.3 Reference States and Reference Values 3.7 Evaluating Properties Using Computer Software 3.8 Applying the Energy Balance Using Property Tables and Software 3.8.1 Using Property Tables 3.8.2 Using Software 3.9 Introducing Specific Heats C???? and Cp 3.10 Evaluating Properties of Liquids and Solids 3.10.1 Approximations for Liquids Using Saturated Liquid Data 3.10.2 Incompressible Substance Model 3.11 Generalized Compressibility Chart 3.11.1 Universal Gas Constant, R 3.11.2 Compressibility Factor, Z 3.11.3 Generalized Compressibility Data, Z Chart 3.11.4 Equations of State Evaluating Properties Using the Ideal Gas Model 3.12 Introducing the Ideal Gas Model 3.12.1 Ideal Gas Equation of State 3.12.2 Ideal Gas Model 3.12.3 Microscopic Interpretation 3.13 Internal Energy, Enthalpy, and Specific Heats of Ideal Gases 3.13.1 ∆u, ∆h, c????,, and cp Relations 3.13.2 Using Specific Heat Functions 3.14 Applying the Energy Balance Using Ideal Gas Tables, Constant Specific Heats, and Software 3.14.1 Using Ideal Gas Tables 3.14.2 Using Constant Specific Heats 3.14.3 Using Computer Software 3.15 Polytropic Process Relations Chapter Summary and Study Guide 4 Control Volume Analysis Using Energy 4.1 Conservation of Mass for a Control Volume 4.1.1 Developing the Mass Rate Balance 4.1.2 Evaluating the Mass Flow Rate 4.2 Forms of the Mass Rate Balance 4.2.1 One-Dimensional Flow Form of the Mass Rate Balance 4.2.2 Steady-State Form of the Mass Rate Balance 4.2.3 Integral Form of the Mass Rate Balance 4.3 Applications of the Mass Rate Balance 4.3.1 Steady-State Application 4.3.2 Time-Dependent (Transient) Application 4.4 Conservation of Energy for a Control Volume 4.4.1 Developing the Energy Rate Balance for a Control Volume 4.4.2 Evaluating Work for a Control Volume 4.4.3 One-Dimensional Flow Form of the Control Volume Energy Rate Balance 4.4.4 Integral Form of the Control Volume Energy Rate Balance 4.5 Analyzing Control Volumes at Steady State 4.5.1 Steady-State Forms of the Mass and Energy Rate Balances 4.5.2 Modeling Considerations for Control Volumes at Steady State 4.6 Nozzles and Diffusers 4.6.1 Nozzle and Diffuser Modeling Considerations 4.6.2 Application to a Steam Nozzle 4.7 Turbines 4.7.1 Steam and Gas Turbine Modeling Considerations 4.7.2 Application to a Steam Turbine 4.8 Compressors and Pumps 4.8.1 Compressor and Pump Modeling Considerations 4.8.2 Applications to an Air Compressor and a Pump System 4.8.3 Pumped-Hydro and Compressed-Air Energy Storage 4.9 Heat Exchangers 4.9.1 Heat Exchanger Modeling Considerations 4.9.2 Applications to a Power Plant Condenser and Computer Cooling 4.10 Throttling Devices 4.10.1 Throttling Device Modeling Considerations 4.10.2 Using a Throttling Calorimeter to Determine Quality 4.11 System Integration 4.12 Transient Analysis 4.12.1 The Mass Balance in Transient Analysis 4.12.2 The Energy Balance in Transient Analysis 4.12.3 Transient Analysis Applications Chapter Summary and Study Guide 5 The Second Law of Thermodynamics 5.1 Introducing the Second Law 5.1.1 Motivating the Second Law 5.1.2 Opportunities for Developing Work 5.1.3 Aspects of the Second Law 5.2 Statements of the Second Law 5.2.1 Clausius Statement of the Second Law 5.2.2 Kelvin–Planck Statement of the Second Law 5.2.3 Entropy Statement of the Second Law 5.2.4 Second Law Summary 5.3 Irreversible and Reversible Processes 5.3.1 Irreversible Processes 5.3.2 Demonstrating Irreversibility 5.3.3 Reversible Processes 5.3.4 Internally Reversible Processes 5.4 Interpreting the Kelvin–Planck Statement 5.5 Applying the Second Law to Thermodynamic Cycles 5.6 Second Law Aspects of Power Cycles Interacting with Two Reservoirs 5.6.1 Limit on Thermal Efficiency 5.6.2 Corollaries of the Second Law for Power Cycles 5.7 Second Law Aspects of Refrigeration and Heat Pump Cycles Interacting with Two Reservoirs 5.7.1 Limits on Coefficients of Performance 5.7.2 Corollaries of the Second Law for Refrigeration and Heat Pump Cycles 5.8 The Kelvin and International Temperature Scales 5.8.1 The Kelvin Scale 5.8.2 The Gas Thermometer 5.8.3 International Temperature Scale 5.9 Maximum Performance Measures for Cycles Operating between Two Reservoirs 5.9.1 Power Cycles 5.9.2 Refrigeration and Heat Pump Cycles 5.10 Carnot Cycle 5.10.1 Carnot Power Cycle 5.10.2 Carnot Refrigeration and Heat Pump Cycles 5.10.3 Carnot Cycle Summary 5.11 Clausius Inequality Chapter Summary and Study Guide 6 Using Entropy 6.1 Entropy—A System Property 6.1.1 Defining Entropy Change 6.1.2 Evaluating Entropy 6.1.3 Entropy and Probability 6.2 Retrieving Entropy Data 6.2.1 Vapor Data 6.2.2 Saturation Data 6.2.3 Liquid Data 6.2.4 Computer Retrieval 6.2.5 Using Graphical Entropy Data 6.3 Introducing the T dS Equations 6.4 Entropy Change of an Incompressible Substance 6.5 Entropy Change of an Ideal Gas 6.5.1 Using Ideal Gas Tables 6.5.2 Assuming Constant Specific Heats 6.5.3 Computer Retrieval 6.6 Entropy Change in Internally Reversible Processes of Closed Systems 6.6.1 Area Representation of Heat Transfer 6.6.2 Carnot Cycle Application 6.6.3 Work and Heat Transfer in an Internally Reversible Process of Water 6.7 Entropy Balance for Closed Systems 6.7.1 Interpreting the Closed System Entropy Balance 6.7.2 Evaluating Entropy Production and Transfer 6.7.3 Applications of the Closed System Entropy Balance 6.7.4 Closed System Entropy Rate Balance 6.8 Directionality of Processes 6.8.1 Increase of Entropy Principle 6.8.2 Statistical Interpretation of Entropy 6.9 Entropy Rate Balance for Control Volumes 6.10 Rate Balances for Control Volumes at Steady State 6.10.1 One-Inlet, One-Exit Control Volumes at Steady State 6.10.2 Applications of the Rate Balances to Control Volumes at Steady State 6.11 Isentropic Processes 6.11.1 General Considerations 6.11.2 Using the Ideal Gas Model 6.11.3 Illustrations: Isentropic Processes of Air 6.12 Isentropic Efficiencies of Turbines, Nozzles, Compressors, and Pumps 6.12.1 Isentropic Turbine Efficiency 6.12.2 Isentropic Nozzle Efficiency 6.12.3 Isentropic Compressor and Pump Efficiencies 6.13 Heat Transfer and Work in Internally Reversible, Steady-State Flow Processes 6.13.1 Heat Transfer 6.13.2 Work 6.13.3 Work in Polytropic Processes Chapter Summary and Study Guide 7 Exergy Analysis 7.1 Introducing Exergy 7.2 Conceptualizing Exergy 7.2.1 Environment and Dead State 7.2.2 Defining Exergy 7.3 Exergy of a System 7.3.1 Exergy Aspects 7.3.2 Specific Exergy 7.3.3 Exergy Change 7.4 Closed System Exergy Balance 7.4.1 Introducing the Closed System Exergy Balance 7.4.2 Closed System Exergy Rate Balance 7.4.3 Exergy Destruction and Loss 7.4.4 Exergy Accounting 7.5 Exergy Rate Balance for Control Volumes at Steady State 7.5.1 Comparing Energy and Exergy for Control Volumes at Steady State 7.5.2 Evaluating Exergy Destruction in Control Volumes at Steady State 7.5.3 Exergy Accounting in Control Volumes at Steady State 7.6 Exergetic (Second Law) Efficiency 7.6.1 Matching End Use to Source 7.6.2 Exergetic Efficiencies of Common Components 7.6.3 Using Exergetic Efficiencies 7.7 Thermoeconomics 7.7.1 Costing 7.7.2 Using Exergy in Design 7.7.3 Exergy Costing of a Cogeneration System Chapter Summary and Study Guide 8 Vapor Power Systems Introducing Power Generation Considering Vapor Power Systems 8.1 Introducing Vapor Power Plants 8.2 The Rankine Cycle 8.2.1 Modeling the Rankine Cycle 8.2.2 Ideal Rankine Cycle 8.2.3 Effects of Boiler and Condenser Pressures on the Rankine Cycle 8.2.4 Principal Irreversibilities and Losses 8.3 Improving Performance—Superheat, Reheat, and Supercritical 8.4 Improving Performance—Regenerative Vapor Power Cycle 8.4.1 Open Feedwater Heaters 8.4.2 Closed Feedwater Heaters 8.4.3 Multiple Feedwater Heaters 8.5 Other Vapor Power Cycle Aspects 8.5.1 Working Fluids 8.5.2 Cogeneration 8.5.3 Carbon Capture and Storage 8.6 Case Study: Exergy Accounting of a Vapor Power Plant Chapter Summary and Study Guide 9 Gas Power Systems Considering Internal Combustion Engines 9.1 Introducing Engine Terminology 9.2 Air-Standard Otto Cycle 9.3 Air-Standard Diesel Cycle 9.4 Air-Standard Dual Cycle Considering Gas Turbine Power Plants 9.5 Modeling Gas Turbine Power Plants 9.6 Air-Standard Brayton Cycle 9.6.1 Evaluating Principal Work and Heat Transfers 9.6.2 Ideal Air-Standard Brayton Cycle 9.6.3 Considering Gas Turbine Irreversibilities and Losses 9.7 Regenerative Gas Turbines 9.8 Regenerative Gas Turbines with Reheat and Intercooling 9.8.1 Gas Turbines with Reheat 9.8.2 Compression with Intercooling 9.8.3 Reheat and Intercooling 9.8.4 Ericsson and Stirling Cycles 9.9 Gas Turbine–Based Combined Cycles 9.9.1 Combined Gas Turbine–Vapor Power Cycle 9.9.2 Cogeneration 9.10 Integrated Gasification Combined-Cycle Power Plants 9.11 Gas Turbines for Aircraft Propulsion Considering Compressible Flow through Nozzles and Diffusers 9.12 Compressible Flow Preliminaries 9.12.1 Momentum Equation for Steady One-Dimensional Flow 9.12.2 Velocity of Sound and Mach Number 9.12.3 Determining Stagnation State Properties 9.13 Analyzing One-Dimensional Steady Flow in Nozzles and Diffusers 9.13.1 Exploring the Effects of Area Change in Subsonic and Supersonic Flows 9.13.2 Effects of Back Pressure on Mass Flow Rate 9.13.3 Flow Across a Normal Shock 9.14 Flow in Nozzles and Diffusers of Ideal Gases with Constant Specific Heats 9.14.1 Isentropic Flow Functions 9.14.2 Normal Shock Functions Chapter Summary and Study Guide 10 Refrigeration and Heat Pump Systems 10.1 Vapor Refrigeration Systems 10.1.1 Carnot Refrigeration Cycle 10.1.2 Departures from the Carnot Cycle 10.2 Analyzing Vapor-Compression Refrigeration Systems 10.2.1 Evaluating Principal Work and Heat Transfers 10.2.2 Performance of Ideal Vapor-Compression Systems 10.2.3 Performance of Actual Vapor-Compression Systems 10.2.4 The p–h Diagram 10.3 Selecting Refrigerants 10.4 Other Vapor-Compression Applications 10.4.1 Cold Storage 10.4.2 Cascade Cycles 10.4.3 Multistage Compression with Intercooling 10.5 Absorption Refrigeration 10.6 Heat Pump Systems 10.6.1 Carnot Heat Pump Cycle 10.6.2 Vapor-Compression Heat Pumps 10.7 Gas Refrigeration Systems 10.7.1 Brayton Refrigeration Cycle 10.7.2 Additional Gas Refrigeration Applications 10.7.3 Automotive Air Conditioning Using Carbon Dioxide Chapter Summary and Study Guide 11 Thermodynamic Relations 11.1 Using Equations of State 11.1.1 Getting Started 11.1.2 Two-Constant Equations of State 11.1.3 Multiconstant Equations of State 11.2 Important Mathematical Relations 11.3 Developing Property Relations 11.3.1 Principal Exact Differentials 11.3.2 Property Relations from Exact Differentials 11.3.3 Fundamental Thermodynamic Functions 11.4 Evaluating Changes in Entropy, Internal Energy, and Enthalpy 11.4.1 Considering Phase Change 11.4.2 Considering Single-Phase Regions 11.5 Other Thermodynamic Relations 11.5.1 Volume Expansivity, Isothermal and Isentropic Compressibility 11.5.2 Relations Involving Specific Heats 11.5.3 Joule–Thomson Coefficient 11.6 Constructing Tables of Thermodynamic Properties 11.6.1 Developing Tables by Integration Using p–????–T and Specific Heat Data 11.6.2 Developing Tables by Differentiating a Fundamental Thermodynamic Function 11.7 Generalized Charts for Enthalpy and Entropy 11.8 p–????–T Relations for Gas Mixtures 11.9 Analyzing Multicomponent Systems 11.9.1 Partial Molal Properties 11.9.2 Chemical Potential 11.9.3 Fundamental Thermodynamic Functions for Multicomponent Systems 11.9.4 Fugacity 11.9.5 Ideal Solution 11.9.6 Chemical Potential for Ideal Solutions Chapter Summary and Study Guide 12 Ideal Gas Mixture and Psychrometric Applications Ideal Gas Mixtures: General Considerations 12.1 Describing Mixture Composition 12.2 Relating p, V, and T for Ideal Gas Mixtures 12.3 Evaluating U, H, S, and Specific Heats 12.3.1 Evaluating U and H 12.3.2 Evaluating c???? and cp 12.3.3 Evaluating S 12.3.4 Working on a Mass Basis 12.4 Analyzing Systems Involving Mixtures 12.4.1 Mixture Processes at Constant Composition 12.4.2 Mixing of Ideal Gases Psychrometric Applications 12.5 Introducing Psychrometric Principles 12.5.1 Moist Air 12.5.2 Humidity Ratio, Relative Humidity, Mixture Enthalpy, and Mixture Entropy 12.5.3 Modeling Moist Air in Equilibrium with Liquid Water 12.5.4 Evaluating the Dew Point Temperature 12.5.5 Evaluating Humidity Ratio Using the Adiabatic-Saturation Temperature 12.6 Psychrometers: Measuring the Wet-Bulb and Dry-Bulb Temperatures 12.7 Psychrometric Charts 12.8 Analyzing Air-Conditioning Processes 12.8.1 Applying Mass and Energy Balances to Air-Conditioning Systems 12.8.2 Conditioning Moist Air at Constant Composition 12.8.3 Dehumidification 12.8.4 Humidification 12.8.5 Evaporative Cooling 12.8.6 Adiabatic Mixing of Two Moist Air Streams 12.9 Cooling Towers Chapter Summary and Study Guide 13 Reacting Mixtures and Combustion Combustion Fundamentals 13.1 Introducing Combustion 13.1.1 Fuels 13.1.2 Modeling Combustion Air 13.1.3 Determining Products of Combustion 13.1.4 Energy and Entropy Balances for Reacting Systems 13.2 Conservation of Energy—Reacting Systems 13.2.1 Evaluating Enthalpy for Reacting Systems 13.2.2 Energy Balances for Reacting Systems 13.2.3 Enthalpy of Combustion and Heating Values 13.3 Determining the Adiabatic Flame Temperature 13.3.1 Using Table Data 13.3.2 Using Computer Software 13.3.3 Closing Comments 13.4 Fuel Cells 13.4.1 Proton Exchange Membrane Fuel Cell 13.4.2 Solid Oxide Fuel Cell 13.5 Absolute Entropy and the Third Law of Thermodynamics 13.5.1 Evaluating Entropy for Reacting Systems 13.5.2 Entropy Balances for Reacting Systems 13.5.3 Evaluating Gibbs Function for Reacting Systems Chemical Exergy 13.6 Conceptualizing Chemical Exergy 13.6.1 Working Equations for Chemical Exergy 13.6.2 Evaluating Chemical Exergy for Several Cases 13.6.3 Closing Comments 13.7 Standard Chemical Exergy 13.7.1 Standard Chemical Exergy of a Hydrocarbon: CaHb 13.7.2 Standard Chemical Exergy of Other Substances 13.8 Applying Total Exergy 13.8.1 Calculating Total Exergy 13.8.2 Calculating Exergetic Efficiencies of Reacting Systems Chapter Summary and Study Guide 14 Chemical and Phase Equilibrium Equilibrium Fundamentals 14.1 Introducing Equilibrium Criteria 14.1.1 Chemical Potential and Equilibrium 14.1.2 Evaluating Chemical Potentials Chemical Equilibrium 14.2 Equation of Reaction Equilibrium 14.2.1 Introductory Case 14.2.2 General Case 14.3 Calculating Equilibrium Compositions 14.3.1 Equilibrium Constant for Ideal Gas Mixtures 14.3.2 Illustrations of the Calculation of Equilibrium Compositions for Reacting Ideal Gas Mixtures 14.3.3 Equilibrium Constant for Mixtures and Solutions 14.4 Further Examples of the Use of the Equilibrium Constant 14.4.1 Determining Equilibrium Flame Temperature 14.4.2 Van’t Hoff Equation 14.4.3 Ionization 14.4.4 Simultaneous Reactions Phase Equilibrium 14.5 Equilibrium between Two Phases of a Pure Substance 14.6 Equilibrium of Multicomponent, Multiphase Systems 14.6.1 Chemical Potential and Phase Equilibrium 14.6.2 Gibbs Phase Rule Chapter Summary and Study Guide Appendix Tables, Figures, and Charts Index to Tables in SI Units Index to Figures and Charts Index EULA