دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Md Nazoor Khan. Simanchala Panigrahi
سری:
ISBN (شابک) : 1316635651, 9781316635650
ناشر: Cambridge University Press
سال نشر: 2017
تعداد صفحات: 513
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 8 مگابایت
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Principles of Engineering Physics 2 به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب اصول فیزیک مهندسی 2 نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب درسی دنبالهای بر جلد اصول فیزیک مهندسی 1 است و هدف آن یک دوره مقدماتی فیزیک مهندسی است. تعادلی بین مفاهیم نظری و کاربردهای آنها فراهم می کند. مفاهیم اساسی ساختار بلوری از جمله جهتها و سطوح شبکه، ضریب بستهبندی اتمی، پراش توسط کریستال، شبکههای متقابل و شدت پرتو پراکنده بهطور گسترده در کتاب مورد بحث قرار گرفتهاند. این کتاب همچنین موضوعات مربوط به ابررسانایی، دستگاه های نوری، مواد دی الکتریک، نیمه هادی ها، نظریه الکترونی جامدات و نوارهای انرژی در جامدات را پوشش می دهد. متن به صورت منطقی و منسجم برای درک آسان توسط دانش آموزان نوشته شده است. تاکید بر درک مفاهیم اساسی و کاربردهای آنها در تعدادی از مسائل مهندسی شده است. هر موضوع به صورت مفهومی و ریاضی به تفصیل مورد بحث قرار می گیرد تا دانش آموزان در درک مطلب با مشکل مواجه نشوند. مشتقات و مسائل حل شده در یک رویکرد گام به گام ارائه شده است.
This textbook is a follow-up to the volume Principles of Engineering Physics 1 and aims for an introductory course in engineering physics. It provides a balance between theoretical concepts and their applications. Fundamental concepts of crystal structure including lattice directions and planes, atomic packing factor, diffraction by crystal, reciprocal lattics and intensity of diffracted beam are extensively discussed in the book. The book also covers topics related to superconductivity, optoelectronic devices, dielectric materials, semiconductors, electron theory of solids and energy bands in solids. The text is written in a logical and coherent manner for easy understanding by students. Emphasis has been given to an understanding of the basic concepts and their applications to a number of engineering problems. Each topic is discussed in detail both conceptually and mathematically, so that students will not face comprehension difficulties. Derivations and solved problems are provided in a step-by-step approach.
Contents Preface Acknowledgment 1. Crystal Structure 1.1 Introduction 1.2 Geometry of Crystals 1.3 Fundamental Terms 1.4 Lattice Directions and Planes 1.4.1 Lattice directions 1.4.2 Crystal planes 1.5 Coordination Number 1.5.1 Simple cubic (SC) lattice 1.5.2 Face centred cubic (FCC) lattice 1.5.3 Body centred cubic (BCC) lattice 1.5.4 Hexagonal closed packed (HCP) lattice 1.6 Atomic Packing Factor (APF) 1.6.1 Simple cubic (SC) lattice 1.6.2 Face centred cubic (FCC) lattice 1.6.3 Body centred cubic (BCC) lattice 1.6.4 Hexagonal closed packed (HCP) lattice 1.7 Structures of Typical Crystals 1.7.1 Diamond structure 1.7.2 Cubic ZnS structure 1.7.3 Sodium chloride structure 1.7.4 Cesium chloride structure 1.8 Diffraction by Crystal 1.8.1 Bragg’s law 1.8.2 Diffraction directions 1.9 Reciprocal Lattice 1.9.1 Reciprocal lattice vector 1.9.2 Properties of reciprocal lattices 1.10 Diffraction and Reciprocal Lattices 1.10.1 Evaluation of scattering normal 1.10.2 Laue’s conditions 1.10.3 Bragg’s law from 1.11 Intensity of Diffracted Beam 1.11.1 Scattering by an electron 1.11.2 Scattering by an atom 1.11.3 Scattering by a unit cell 1.11.4 Structure factor calculations Questions Problems Multiple Choice Questions Answers 2. Defects in Crystals 2.1 Introduction 2.2 Point Defects 2.2.1 Vacancy 2.2.2 Interstitials 2.2.3 Frenkel and Schottky defects 2.2.4 Colour centres 2.2.5 Polarons 2.2.6 Excitons 2.2.7 Antisite defects 2.2.8 Topological defects 2.3 Line Defects (One-Dimensional) 2.3.1 Edge dislocation 2.3.2 Screw dislocations 2.4 Interfacial Defects 2.4.1 External surface 2.4.2 Grain boundaries 2.4.3 Twin boundaries 2.5 Stacking Faults 2.6 Bulk or Volume Defects 2.7 Atomic Vibrations Questions Multiple Choice Questions Answers 3. X-rays 3.1 Introduction 3.2 Production of X-rays by a Coolidge Tube 3.3 Origin of X-rays 3.3.1 Origin of continuous X-ray spectrum 3.3.2 Origin of the characteristic spectrum 3.4 Absorption of X-rays 3.5 Properties of X-rays 3.6 Moseley’s Law 3.7 Bragg’s X-rays Spectrometer 3.7.1 Determination of crystal structure by Bragg’s X-ray spectrometer 3.7.2 Powder method 3.8 Uses of X-rays Questions Problems Multiple Choice Questions Answers 4. Bonding in Solids 4.1 Introduction 4.2 Bonding Forces 4.3 Bonding Energies 4.4 Classification of Bonds 4.4.1 Primary bonds 4.4.2 Secondary bonds 4.5 Comparison of Different Types of Bonds 4.6 Allotropy and Polymorphism Questions Multiple Choice Questions Answers 5. Magnetic Properties of Materials 5.1 Introduction 5.2 Magnetic Parameters 5.3 Magnetic Parameter Relations 5.4 Classification of Materials from the Magnetic Point of View 5.5 Origin of Magnetic Moments 5.6 Diamagnetism 5.6.1 Langevin’s classical theory of diamagnetism 5.7 Paramagnetism 5.7.1 Langevin’s classical theory of paramagnetism 5.7.2 Quantum theory of paramagnetism 5.8 Ferromagnetism 5.8.1 Weiss’s molecular field theory 5.8.2 Temperature effects on spontaneous magnetization 5.8.3 Paramagnetic region 5.8.4 Criticisms of Weiss’s molecular field theory 5.8.5 Ferromagnetic domains 5.8.6 Hysteresis 5.9 Hard and Soft Magnetic Materials 5.9.1 Hard ferromagnetic materials 5.9.2 Soft ferromagnetic materials 5.10 Anti-Ferromagnetism 5.10.1 Anti-ferromagnetic susceptibility 5.11 Ferrimagnetism 5.11.1 Properties of ferrites 5.11.2 Applications of ferrites 5.12 Comparisons Questions Problems Multiple Choice Questions Answers 6. Superconductivity 6.1 Introduction 6.2 Zero Resistivity 6.3 Critical Temperature TC 6.4 Critical Magnetic Field BC 6.5 Critical Current Density JC 6.6 Meissner Effect 6.7 Josephson Effect 6.8 Theory of Superconductivity: BCS Theory 6.9 Types of Superconductors 6.9.1 Type-I superconductors 6.9.2 Type-II superconductors 6.10 Phase Diagram 6.11 Thermodynamic Properties of Superconductors 6.11.1 Change in entropy 6.11.2 Change in specific heat 6.11.3 Thermal conductivity 6.11.4 Energy gap 6.12 London Equations 6.13 Applications of Superconductivity 6.13.1 Transportation 6.13.2 Medical 6.13.3 Fundamental research 6.13.4 Power systems 6.13.5 Computers 6.13.6 Electronics 6.13.7 Military 6.13.8 Space research 6.13.9 Internet 6.13.10 Pollution control 6.13.11 Refrigeration Questions Problems Multiple Choice Questions Answers 7. Optical Properties of Materials 7.1 Introduction 7.2 Scattering 7.2.1 Applications 7.3 Reflection 7.3.1 Reflection by a dielectric surface 7.3.2 Reflection by a metallic surface 7.4 Refraction 7.4.1 Refraction by a dielectric surface 7.4.2 Refraction by a metallic surface 7.5 Absorption 7.5.1 Macroscopic theory of absorption 7.5.2 Absorption by electronic polarization 7.5.3 Quantum theory of absorption 7.5.4 Absorption by impurity 7.6 Transmission 7.7 Atomic Theory of Optical Properties 7.7.1 Atomic theory of optical properties of metals 7.7.2 Atomic theory of optical properties of dielectrics Questions Problems Multiple Choice Questions Answers 8. Optoelectronic Devices 8.1 Introduction 8.2 Laser 8.2.1 Metastable state 8.2.2 Electronic transition 8.2.3 Spontaneous and stimulated emission probabilities 8.2.4 Basic principle of lasers 8.2.5 Three-level laser systems (ruby laser) 8.2.6 Four-level laser systems (He–Ne laser) 8.2.7 Broadening of laser radiation 8.2.8 Coherence 8.3 Practical Lasers 8.3.1 Ruby laser 8.3.2 He–Ne gas laser 8.3.3 Semiconductor lasers 8.4 Applications of Lasers 8.5 Light Emitting Diodes 8.5.1 Principle 8.5.2 Construction 8.5.3 Applications of LED 8.5.4 Merits of LED over conventional incandescent lamps 8.6 Optical Fibers 8.6.1 Structure of optical fibers 8.6.2 Classification of optical fibers 8.6.3 Principle of optical fiber communication 8.6.4 Optical fiber communication system 8.6.5 Characteristics of light source 8.6.6 Attenuation in optical fibers 8.6.7 Applications of optical fibers Questions Problems Multiple Choice Questions Answers 9. Dielectric Materials 9.1 Introduction 9.2 An Overview of Dielectric Polarization 9.3 Dielectric Parameters 9.3.1 Dielectric constant er 9.3.2 Electric dipole moment µ 9.3.3 Dielectric polarization 9.3.4 Polarizability a 9.4 Microscopic Field 9.4.1 Calculation of 9.4.2 Calculation of 9.4.3 Calculation of E3 9.5 Polarization Mechanisms 9.5.1 Electronic polarization 9.5.2 Ionic polarization 9.5.3 Dipolar (orientation) polarization 9.5.4 Total polarization 9.5.5 Clausius–Mossotti relation 9.6 Effect of Temperature on Dielectrics 9.7 Effect of Frequency on Dielectrics 9.7.1 Electronic polarizability 9.7.2 Ionic polarizability 9.7.3 Dipolar polarizability 9.8 Dielectric Breakdown 9.8.1 Avalanche breakdown 9.8.2 Thermal breakdown 9.8.3 Electrochemical breakdown 9.8.4 Defect breakdown 9.9 Ferroelectric Materials 9.9.1 Ferroelectric hysteresis 9.9.2 Spontaneous polarization 9.9.3 Applications of ferroelectrics 9.10 Piezoelectrics 9.10.1 Simple molecular model of the piezoelectric effect 9.10.2 Applications of piezoelectric effect 9.11 Pyroelectrics 9.11.1 Applications of the pyroelectric effect 9.12 Dielectrics as Electrical Insulators Questions Problems Multiple Choice Questions Answers 10. Electronic Theory of Solids 10.1 Introduction 10.2 Free Electron Theory of Metals 10.2.1 Classical free electron theory of metals 10.2.2 Advantages and disadvantages 10.2.3 Quantum theory of free electrons 10.3 Statistical Distribution Functions 10.3.1 Fermi–Dirac distribution function F(e) 10.3.2 Electronic specific heat 10.3.3 Thermal conductivity 10.3.4 Wiedemann–Franz law 10.4 Conductivity of Metals 10.5 Hall Effect 10.5.1 Explanation 10.5.2 Determination of Hall coefficient RH 10.5.3 Applications of Hall effect Questions Problems Multiple Choice Questions Answers 11. Energy Bands in Solids 11.1 Introduction 11.2 Origin of Energy Bands 11.2.1 Origin of energy bands: The classical approach 11.2.2 Origin of energy bands: The quantum mechanical approach 11.2.3 Dispersion curves 11.2.4 Conclusions 11.3 Representation of Band Diagrams of Solids 11.4 Main Features of Energy Band Theory of Solids Questions Multiple Choice Questions Answers 12. Semiconductors 12.1 Introduction 12.2 Semiconductors 12.3 Band Theory of Semiconductors 12.3.1 Intrinsic semiconductors 12.3.2 Extrinsic semiconductors 12.4 Compound Semiconductors 12.4.1 Semiconducting properties Questions Problems Multiple Choice Questions Answers 13 Nano Structures and Thin Films 13.1 Introduction 13.2 Nano Scale and its Visualization 13.3 Nano Science and Nanotechnology 13.4 Surface to Volume Ratio 13.5 Quantum Confinement 13.6 Nano Cluster 13.7 Nano Fabrication 13.7.1 Gas phase or condensed phase classification 13.7.2 Gas phase evaporation method 13.7.3 Top down approach 13.7.4 Bottom up approach 13.8 Preparation of Solid Thin Films 13.8.1 Physical vapour deposition (PVD) 13.8.2 Chemical vapour deposition (CVD) 13.8.3 Sol gel 13.8.4 Ball milling 13.9 Few Wonder Nano Materials 13.9.1 Fullerenes 13.9.2 Carbon nanotube (CNT) 13.9.3 Graphene Questions Multiple Choice Questions Answers Bibliography Index