دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Md Nazoor Khan. Simanchala Panigrahi
سری:
ISBN (شابک) : 1316635643, 9781316635643
ناشر: Cambridge University Press
سال نشر: 2017
تعداد صفحات: 898
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 9 مگابایت
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Principles of Engineering Physics 1 به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب اصول فیزیک مهندسی 1 نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
اصول و نظریه های اساسی فیزیک مهندسی را پوشش می دهد و تعادلی بین مفاهیم نظری و کاربردهای آنها ارائه می دهد. این کتاب به عنوان یک کتاب درسی برای دوره مقدماتی فیزیک مهندسی طراحی شده است. با شروع یک بحث جامع در مورد نوسانات و امواج با کاربرد در زمینه مهندسی مکانیک و برق، در ادامه به توضیح مفاهیم اساسی مانند اصل هویگن، دوپریسم فرنل، پراش فراونهوفر و پلاریزاسیون میپردازد. تاکید بر درک مفاهیم اساسی و کاربردهای آنها در تعدادی از مسائل مهندسی شده است. هر موضوع به تفصیل به صورت مفهومی و ریاضی مورد بحث قرار گرفته است. ویژگی های آموزشی شامل مسائل حل شده، سوالات تمرین شده حل نشده و سوالات چند گزینه ای در سراسر کتاب پراکنده شده است. این به دانشجویان کارشناسی مهندسی کمک می کند تا مهارت هایی را برای حل مسائل دشوار در مکانیک کوانتومی، الکترومغناطیس، علوم نانو، سیستم های انرژی و سایر رشته های مهندسی کسب کنند.
Covers the basic principles and theories of engineering physics and offers a balance between theoretical concepts and their applications. It is designed as a textbook for an introductory course in engineering physics. Beginning with a comprehensive discussion on oscillations and waves with applications in the field of mechanical and electrical engineering, it goes on to explain the basic concepts such as Huygen's principle, Fresnel's biprism, Fraunhofer diffraction and polarization. Emphasis has been given to an understanding of the basic concepts and their applications to a number of engineering problems. Each topic has been discussed in detail, both conceptually and mathematically. Pedagogical features including solved problems, unsolved exercised and multiple choice questions are interspersed throughout the book. This will help undergraduate students of engineering acquire skills for solving difficult problems in quantum mechanics, electromagnetism, nanoscience, energy systems and other engineering disciplines.
Contents Preface Acknowledgment 1. Oscillations and Waves 1.1 Introduction 1.1.1 Parameters of an oscillatory system 1.2 Simple Harmonic Oscillation (SHO) 1.2.1 Energy of a simple harmonic oscillator 1.2.2 Characteristics of SHO 1.3 Damped Harmonic Oscillation (DHO) 1.3.1 Damping of an oscillator 1.4 Forced Vibrations 1.4.1 Velocity of the forced harmonic oscillator 1.4.2 Total energy of the forced harmonic oscillator 1.4.3 Power of the forced harmonic oscillator 1.5 Displacement Resonance 1.5.1 Resonant amplitude 1.5.2 Sharpness of resonance 1.5.3 Quality factor of a forced harmonic oscillator 1.5.4 Examples of resonance 1.6 Coupled Oscillators 1.6.1 Experiment on a two-body coupled oscillator 1.7 Analogy of Mechanical and Electrical Oscillations 1.8 Wave as a Periodic Variation Quantity in Space and Time 1.8.1 Wave equation 1.8.2 Wave equation in differential form 1.9 Longitudinal and Transverse Waves 1.9.1 Longitudinal waves 1.9.2 Transverse waves 1.9.3 Difference between longitudinal waves and transverse waves 1.9.4 Characteristic of progressive waves 1.10 Stationary Waves 1.10.1 Formation of stationary waves 1.10.2 Characteristics of stationary waves 1.10.3 Differences between progressive and stationary waves 1.11 Reflection of a Wave at the Boundary of Two Media 1.11.1 Reflection of transverse waves 1.11.2 Reflection of longitudinal waves 1.12 Refraction of a Wave at the Boundary of Two Media 1.12.1 Refraction of transverse waves 1.12.2 Refraction of longitudinal waves 1.13 Wave Packet 1.14 Phase Velocity and Group Velocity 1.14.1 Phase velocity 1.14.2 Group velocity 1.14.3 Relation between phase velocity and group velocity 1.15 Uncertainty Principle 1.15.1 Uncertainty principle for classical waves 1.15.2 Heisenberg’s uncertainty principle 1.16 Superposition of Waves 1.16.1 Basis for the principle of superposition 1.16.2 Principle of superposition 1.16.3 Two beams superposition in one direction 1.16.4 Multiple beam superpositions 1.16.5 Coherent and incoherent superposition Questions Problems Multiple Choice Questions Answers 2. Interference 2.1 Introduction 2.2 Huygens’ Principle 2.2.1 Explanation 2.2.2 Construction of a new wavefront 2.2.3 Absence of backward waves 2.2.4 Applications 2.3 Interference of Water Waves 2.4 Young’s Double Slit Experiment 2.5 Coherent Sources 2.5.1 Methods of practical realization of coherent sources 2.6 Classification of the Interference Phenomenon 2.7 Theory of Interference 2.7.1 Constructive interference (I = Imax) 2.7.2 Destructive interference (I = Imin) 2.7.3 Fringe spacing b 2.7.4 Intensity distribution curve 2.8 Conservation of Energy in Interference 2.9 Conditions for Interference of Light 2.10 Shape of Interference Fringes 2.10.1 Shape of interference fringes on XY-plane (Hyperbolic) 2.11 Interference Fringes in 3-D Space 2.11.1 Shape of interference fringes on the ZX-plane (Circular) 2.11.2 Shape of interference fringes on the XY-plane (Hyperbolic) 2.11.3 Shape of interference fringes on the YZ-plane (Hyperbolic) 2.12 Newton’s Rings 2.12.1 Experimental setup 2.12.2 Theory 2.12.3 Calculations 2.12.4 Diameter of the nth order Newton’s ring 2.12.5 Diameter of the nth order bright Newton’s ring 2.12.6 Diameter of the nth order dark Newton’s ring 2.12.7 Central fringe as seen by the reflected light 2.13 Newton’s Rings by Transmitted Light 2.13.1 Diameter of the nth order Newton’s ring 2.13.2 Diameter of the nth order bright Newton’s ring 2.13.3 Diameter of the nth order dark Newton’s ring 2.13.4 Central fringe as seen by the transmitted light 2.13.5 Discussions 2.14 Determination of Wavelength of Light using Newton’s Ring 2.14.1 Theory for the experiment 2.15 Determination of Refractive Index of Liquids using Newton’s Rings 2.15.1 Theory for the experiment 2.16 Fresnel’s Biprism 2.16.1 Determination of wavelength of light using a biprism 2.17 Interferometers 2.17.1 Michelson interferometer Questions Problems Multiple Choice Questions Answers 3. Diffraction 3.1 Introduction 3.2 Classification of Diffraction 3.3 Fresnel’s Explanation of Rectilinear Propagation of Light 3.3.1 Fresnel’s assumptions 3.3.2 Calculation of the resultant amplitude 3.3.3 Average distance of the nth Fresnel’s half period zone from the pole 3.3.4 Phase difference among half period zones 3.3.5 Schuster’s method of summing the series 3.4 Zone Plate 3.4.1 Types of zone plates 3.4.2 Action of the zone plate 3.4.3 Principle behind zone plates 3.4.4 Multiple foci of a zone plate 3.4.5 Presence of odd numbered foci 3.4.6 Intensity of fifth order focus 3.4.7 Absence of even numbered foci 3.4.8 Intensity of the fourth order focus 3.4.9 Comparison of a zone plate with a convex lens 3.5 Fraunhofer Diffraction 3.5.1 Fraunhofer diffraction due to a single slit 3.5.2 Intensity distribution 3.5.3 Width of the principal maximum 3.6 Plane Diffraction Grating 3.6.1 Theory of plane diffraction grating under normal incidence 3.6.2 Theory of plane diffraction grating under oblique incidence 3.6.3 Angular width of the principal maxima 3.6.4 Formation of spectra by diffraction grating 3.7 Dispersion 3.8 Determination of Wavelength of Light by Grating 3.8.1 Theory 3.8.2 Adjustments 3.8.3 Measurement of q 3.8.4 Calculation of l 3.8.5 Alternative application Questions Problems Multiple Choice Questions Answers 4. Polarization 4.1 Introduction 4.2 Polarization of Waves 4.2.1 Mechanical demonstration of polarization of waves 4.2.2 Demonstration of optical polarization of waves 4.2.3 Pictorial representation of light 4.2.4 Few definitions 4.3 Classification of Polarized Light 4.3.1 Plane polarized light 4.3.2 Circularly polarized light 4.3.3 Elliptically polarized light 4.4 Polarization by Reflection 4.4.1 Explanation of polarization by reflection 4.4.2 Brewster’s law 4.5 Polarization by Refraction 4.5.1 Malus’s law 4.6 Polarization by Scattering 4.7 Double Refraction 4.7.1 Few terms connected with the double refraction phenomenon 4.7.2 Difference between ordinary ray and extraordinary ray 4.7.3 Polarization by double refraction 4.7.4 Huygens’ experiment on polarization by double refraction 4.7.5 Huygens’ theory of double refraction 4.7.6 Phenomenon of double refraction at normal incidence 4.7.7 Phenomenon of double refraction at oblique incidence 4.7.8 Special cases 4.8 Nicol Prism 4.8.1 Principle 4.8.2 Construction 4.8.3 Action of a Nicol prism 4.8.4 Limitations 4.8.5 Parallel and crossed Nicol prisms 4.9 Retardation Plates 4.9.1 Half-wave plate 4.9.2 Quarter-wave plate 4.10 Production of Circularly Polarized Light 4.10.1 Principle 4.10.2 Production 4.10.3 Analysis of circularly polarized light 4.11 Production of Elliptically Polarized Light 4.11.1 Principle 4.11.2 Production 4.11.3 Analysis of elliptically polarized light 4.12 Analysis of Light 4.13 Optical Rotation 4.13.1 Laws of optical rotation 4.13.2 Fresnel’s theory of optical rotation 4.13.3 Mathematical analysis of Fresnel’s theory of optical rotation 4.13.4 Calculation of the angle of optical rotation 4.13.5 Specific rotation 4.14 Polarimeter 4.14.1 Laurent’s half-shade polarimeter Questions Problems Multiple Choice Questions Answers 5. Electromagnetism 5.1 Introduction 5.2 Vector Calculus 5.2.1 Line integrals 5.2.2 Surface integrals 5.2.3 Volume integral 5.2.4 Gradient of scalar function 5.2.5 Divergence of a vector function 5.2.6 Curl of a vector function 5.2.7 Gauss’s divergence theorem 5.2.8 Stokes’ theorem 5.2.9 Green’s theorem 5.2.10 Useful vector relations 5.3 Gauss’s Law 5.3.1 Gauss’s law of electrostatics in free space 5.3.2 Gauss’s law of electrostatics in a dielectric medium 5.3.3 Applications of Gauss’s law 5.4 Magnetic Induction 5.4.1 Units of magnetic induction 5.4.2 Special cases of magnetic induction 5.5 Magnetic Field Strength (Intensity) 5.6 Ampere’s Circuital Law 5.6.1 Ampere’s circuital law in differential form 5.6.2 Applications of Ampere’s circuital law 5.7 Faraday’s Law of Electromagnetic Induction 5.7.1 Integral form of Faraday’s law 5.7.2 Differential form of Faraday’s law 5.8 Displacement Current 5.8.1 Physical significance of displacement current 5.8.2 Distinction between conduction current and displacement current 5.9 Maxwell’s Electromagnetic Equations 5.9.1 Maxwell’s electromagnetic equations in differential form 5.9.2 Special cases 5.9.3 Maxwell’s electromagnetic equations in integral form Questions Problems Multiple Choice Questions Answers 6. Electromagnetic Waves 6.1 Introduction 6.2 Electromagnetic Energy Density 6.2.1 Interpretation of the left-hand side of Eq. (6.8) 6.2.2 Interpretation of the right-hand side of Eq. (6.8) 6.3 Poynting’s Vector 6.4 Poynting’s Theorem 6.5 Vector Potential and Scalar Potential 6.5.1 Magnetic scalar potential 6.5.2 Magnetic vector potential 6.6 Electromagnetic Wave Equations for E and B 6.6.1 Electromagnetic wave equations for E 6.6.2 Electromagnetic wave equations for H 6.6.3 Electromagnetic wave equations for B 6.7 Wave Equation in Terms of Scalar and Vector Potentials 6.7.1 Wave equation in terms of vector potential A 6.7.2 Wave equation in terms of scalar potential ФЕ 6.8 Plane Electromagnetic Waves 6.9 Transverse Nature of Electromagnetic Waves 6.9.1 Transverse nature of vector E 6.9.2 Transverse nature of vector H 6.9.3 Relative orientation of E and H 6.10 Speed of Electromagnetic Waves 6.11 Average Value of Poynting’s Vector 6.12 Propagation of Electromagnetic Waves in Plasma Medium 6.12.1 Conductivity of ionized medium 6.12.2 Wave equation in ionized medium 6.12.3 Propagation constant in an ionized medium 6.13 Reflection and Refraction of Electromagnetic Waves at Non-conducting and Conducting Boundaries 6.13.1 Reflection and refraction of electromagnetic waves at a non-conducting surface 6.13.2 Reflection and refraction of electromagnetic waves at a conducting surface Questions Problems Multiple Choice Questions Answers 7. Elementary Concepts of Quantum Physics 7.1 Introduction 7.2 Need for Quantum Physics 7.3 Particles and Waves 7.4 Particle Aspect of Waves 7.4.1 Blackbody radiation 7.4.2 Photoelectric effect 7.4.3 Compton effect 7.4.4 Pair production 7.4.5 Characteristics of photon 7.5 Wave Aspect of Particles 7.5.1 Matter waves 7.5.2 Davisson–Germer experiment 7.5.3 Properties of matter wave 7.6 Atom Models 7.6.1 Rutherford’s atom model 7.6.2 Bohr’s atom model 7.7 Heisenberg’s Uncertainty Principle 7.7.1 Statement 7.7.2 Explanation 7.7.3 Experimental illustration of the uncertainty principle 7.7.4 Applications of uncertainty principle 7.8 Transition from Deterministic Classical Physics to Probabilistic Quantum Physics 7.9 Wave Function y 7.9.1 Characteristics of the wave function of a matter wave 7.9.2 Probability density 7.9.3 Dimensional analysis of a wave function 7.10 Superposition Principle 7.11 Normalization 7.11.1 Procedures for calculation of the normalization constant 7.12 Observables and Operators 7.13 Eigenvalues 7.14 Eigenfunctions 7.15 Operators, Eigenfunctions and Eigenvalues 7.16 Expectation Value 7.16.1 Procedures for calculation of the expectation value 7.17 Schrödinger’s Equation 7.17.1 Schrödinger’s time-dependent equation 7.17.2 Schrödinger’s time-independent equation 7.17.3 Newton’s equation and Schrödinger’s equation Questions Problems Multiple Choice Questions Answers 8. Applications of Quantum Mechanics 8.1 Introduction 8.2 One-Dimensional Problems 8.3 Boundary Conditions on y 8.4 Free Particle 8.5 Potential Steps 8.5.1 Reflection and transmission at the boundary at x = 0 8.5.2 Potential energy barrier 8.6 Infinity Deep Potential Well 8.6.1 Quantization of de Broglie wavelengths 8.6.2 Quantization of energy (energy eigenvalues) 8.6.3 Quantization of speed (speed eigenvalues) 8.6.4 Eigenfunctions Questions Problems Multiple Choice Questions Answers 9. Special Theory of Relativity 9.1 Introduction 9.2 Frame of Reference 9.2.1 Inertial frame of reference 9.2.2 Non-inertial frame of reference 9.3 Galilean Transformation 9.4 Michelson–Morley Experiment 9.5 Einstein’s Principles of Relativity 9.6 Lorentz Transformation 9.6.1 Mathematics of the Lorentz transformation 9.6.2 Consequences of the Lorentz transformation equations 9.7 Relativity of Simultaneity 9.8 Relativistic Addition of Velocity 9.9 Relativistic Momentum 9.10 Variation of Mass with Speed 9.11 Mass–Energy Equivalence 9.12 Massless Particles (m0 = 0) 9.13 Generalization of Newton’s Second Law Questions Problems Multiple Choice Questions Answers 10. Architectural Acoustics 10.1 Introduction 10.2 Basic Requirements of an Acoustically Good Hall 10.3 Reverberation and Reverberation Time 10.3.1 Sabine’s formula for reverberation time 10.4 Sound Absorption 10.4.1 Room averaged sound absorption coefficient 10.4.2 Measurement of absorption coefficient 10.5 Factors Affecting the Acoustics of Buildings 10.5.1 Requisites for good acoustics 10.6 Decibel Scale 10.7 Acoustic Quieting 10.7.1 Aspects of acoustic quieting 10.7.2 Methods of quieting 10.7.3 Quieting for specific observers 10.7 4 Mufflers 10.8 Soundproofing 10.8.1 Airborne soundproofing 10.8.2 Structure-borne soundproofing Questions Problems Multiple Choice Questions Answers 11. Ultrasonics 11.1 Introduction 11.2 Production of Ultrasonic Waves 11.2.1 Galton’s whistle 11.2.2 Magnetostriction oscillator 11.2.3 Piezoelectric oscillator 11.3 Detection of Ultrasonic Waves 11.4 Properties of Ultrasonic Waves 11.5 Wavelength Determination of Ultrasonic Waves 11.6 Ultrasound Cavitation 11.6.1 Parameters affecting ultrasonic cavitation 11.6.2 Consequences of ultrasonic cavitation 11.7 Applications of Ultrasonic Waves 11.8 Sonograms 11.9 Sonar 11.9.1 Applications of sonar 11.10 Hazards of Ultrasound Questions Problems Multiple Choice Questions Answers 12. Non-Destructive Testing 12.1 Introduction 12.2 Objectives of NDT 12.3 Methods of NDT 12.3.1 Visual and optical testing (VOT) 12.3.2 Dye penetrant testing (DPT) 12.3.3 Magnetic particle testing 12.3.4 Electromagnetic or eddy current testing 12.3.5 Radiographic testing 12.3.6 Ultrasonic testing 12.3.7 Pulse–echo system 12.4 Relative Merits of Various NDT Methods 12.5 Non-Destructive Testing Methods and Applications Questions Problems Multiple Choice Questions Answers 13. Nuclear Accelerators 13.1 Introduction 13.2 Need of Nuclear Accelerators 13.3 Basic Mechanism of a Nuclear Accelerator 13.4 Main Components 13.4.1 Ion sources 13.4.2 Accelerating tube 13.5 Performance Index 13.6 Types of Accelerators 13.7 D.C. Accelerators 13.7.1 Cockcroft–Walton accelerator (D.C. accelerator) 13.7.2 Van de Graaff accelerator (D.C. accelerator) 13.7.3 Tandem accelerator (D.C. accelerator) 13.8 R.F. Accelerators 13.8.1 Linear accelerators 13.8.2 Cyclotron 13.9 Electron Accelerators 13.9.1 Betatron 13.10 Applications of Accelerators 13.10.1 Radiation processing of materials 13.10.2 Uses of isotopes Questions Problems Multiple Choice Questions Answers 14 Holography 14.1 Introduction 14.2 Basic Principles of Holography 14.3 Types of Holograms 14.3.1 Reflection holograms 14.3.2 Transmission holograms 14.3.3 Comparison of transmission and reflection holograms 14.4 White Light Holograms 14.5 Necessity of Laser Source 14.6 Basic Requirements of a Holographic Laboratory 14.7 Viewing a Hologram 14.8 Difference between Photography and Holography 14.9 Applications of Holography 14.9.1 Common applications of holography 14.9.2 Application of holographic interferometry 14.9.3 Application of holographic microscopy Questions Multiple Choice Questions Answers Bibliography Index