دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 2
نویسندگان: Peter W. Hawkes
سری:
ISBN (شابک) : 0081022565, 9780081022566
ناشر: Academic Press
سال نشر: 2017
تعداد صفحات: 694
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 19 مگابایت
در صورت تبدیل فایل کتاب Principles of Electron Optics: Basic Geometrical Optics به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب اصول اپتیک الکترون: اپتیک هندسی پایه نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
اصول اپتیک الکترون: اپتیک هندسی پایه، ویرایش دوم، اپتیک هندسی مورد نیاز برای تجزیه و تحلیل طیف بسیار وسیعی از ابزارها را بررسی می کند: لوله های پرتو کاتدی. خانواده میکروسکوپ های الکترونی، از جمله ابزارهای انتقال پرتو ثابت و روبشی، میکروسکوپ الکترونی روبشی و میکروسکوپ نشری. طیف سنج های الکترونی و طیف نگار جرمی؛ مبدل های تصویر؛ تداخل سنج های الکترونی و دستگاه های پراش؛ دستگاه های جوش الکترونی؛ و دستگاههای لیتوگرافی پرتو الکترونی.
این کتاب شرحی مستقل، دقیق و مدرن از اپتیک الکترونی را برای هر کسی که با پرتوهای ذرات با چگالی جریان متوسط در محدوده انرژی تا چند مگا الکترون ولت درگیر است، ارائه میکند. . شما تمام معادلات اساسی را با مشتقات آنها، ایده های اخیر در مورد مطالعات انحراف، بحث گسترده در مورد روش های عددی مورد نیاز برای محاسبه خواص سیستم های خاص و راهنمایی برای ادبیات همه موضوعات تحت پوشش پیدا خواهید کرد.
این کتاب برای دانشجویان و معلمان کارشناسی ارشد فیزیک و اپتیک الکترونی و همچنین محققان و دانشمندان دانشگاهی و صنعتی که در زمینه اپتیک الکترونی، میکروسکوپ الکترونی و یونی و نانو سنگی کار می کنند در نظر گرفته شده است.
Principles of Electron Optics: Basic Geometrical Optics, Second Edition, explores the geometrical optics needed to analyze an extremely wide range of instruments: cathode-ray tubes; the family of electron microscopes, including the fixed-beam and scanning transmission instruments, the scanning electron microscope and the emission microscope; electron spectrometers and mass spectrograph; image converters; electron interferometers and diffraction devices; electron welding machines; and electron-beam lithography devices.
The book provides a self-contained, detailed, modern account of electron optics for anyone involved with particle beams of modest current density in the energy range up to a few mega-electronvolts. You will find all the basic equations with their derivations, recent ideas concerning aberration studies, extensive discussion of the numerical methods needed to calculate the properties of specific systems and guidance to the literature of all the topics covered.
The book is intended for postgraduate students and teachers in physics and electron optics, as well as researchers and scientists in academia and industry working in the field of electron optics, electron and ion microscopy and nanolithography.
Cover Principles of Electron Optics, Volume One: Basic Geometrical Optics Copyright Preface to the Second Edition Preface to the First Edition (Extracts) Acknowledgments 1 Introduction 1.1 Organization of the Subject 1.2 History Part I: Classical Mechanics 2 Relativistic Kinematics 2.1 The Lorentz Equation and General Considerations 2.2 Conservation of Energy 2.3 The Acceleration Potential 2.4 Definition of Coordinate Systems 2.5 Conservation of Axial Angular Momentum 3 Different Forms of Trajectory Equations 3.1 Parametric Representation in Terms of the Arc-Length 3.2 Relativistic Proper-Time Representation 3.3 The Cartesian Representation 3.4 Scaling Rules 4 Variational Principles 4.1 The Lagrange Formalism 4.2 General Rotationally Symmetric Systems 4.3 The Canonical Formalism 4.4 The Time-Independent Form of the Variational Principle 4.5 Static Rotationally Symmetric Systems 5 Hamiltonian Optics 5.1 Introduction of the Characteristic Function 5.2 The Hamilton–Jacobi Equation 5.3 The Analogy With Light Optics 5.4 The Influence of Vector Potentials 5.5 Gauge Transformations 5.6 Poincaré’s Integral Invariant 5.7 The Problem of Uniqueness 5.8 Lie Algebra 5.9 Summary Part II: Calculation of Static Fields 6 Basic Concepts and Equations 6.1 General Considerations 6.2 Field Equations 6.3 Variational Principles 6.4 Rotationally Symmetric Fields 6.5 Planar Fields 7 Series Expansions 7.1 Azimuthal Fourier Series Expansions 7.1.1 Scalar Potentials 7.1.2 Vector Potentials 7.2 Radial Series Expansions 7.2.1 Scalar Potentials 7.2.2 Vector Potentials 7.2.3 Explicit Representations 7.3 Rotationally Symmetric Fields 7.3.1 Electrostatic Fields 7.3.2 Magnetic Fields 7.4 Multipole Fields 7.5 Planar Fields 7.6 Fourier–Bessel Series Expansions 8 Boundary-Value Problems 8.1 Boundary-Value Problems in Electrostatics 8.2 Boundary Conditions in Magnetostatics 8.3 Examples of Boundary-Value Problems in Magnetostatics 8.3.1 Devices with Superconducting Yokes 8.3.2 Conventional Round Magnetic Lenses 8.3.3 Unconventional Round Magnetic Lenses 8.3.4 Toroidal Magnetic Deflection Systems 9 Integral Equations 9.1 Integral Equations for Scalar Potentials 9.1.1 General Theory 9.1.2 Dirichlet Problems 9.1.3 Neumann Problems 9.2 Problems with Interface Conditions 9.3 Reduction of the Dimensions 9.3.1 Dirichlet Problems 9.3.2 Interface Conditions 9.3.3 Planar Fields 9.4 Important Special Cases 9.4.1 Rotationally Symmetric Scalar Potentials 9.4.2 Rotationally Symmetric Vector Potentials 9.4.3 Unconventional Magnetic Lenses 9.4.4 Magnetic Deflection Coils 9.4.5 Multipole Systems 9.4.6 Small Perturbations of the Rotational Symmetry 9.5 Résumé 10 The Boundary-Element Method 10.1 Evaluation of the Fourier Integral Kernels 10.1.1 Introduction of Moduli 10.1.2 Radial Series Expansions 10.1.3 Recurrence Relations 10.1.4 Analytic Differentiation 10.2 Numerical Solution of One-Dimensional Integral Equations 10.2.1 Conventional Solution Techniques 10.2.2 The Charge Simulation Method 10.2.3 Combination with Interpolation Kernels 10.2.3.1 General formalism 10.2.3.2 Marginal positions 10.2.3.3 General properties 10.2.3.4 Solution of integral equations 10.2.3.5 Application to field calculations 10.2.4 Evaluation of Improper Integrals 10.3 Superposition of Aperture Fields 10.3.1 Electric Field of a Single Aperture 10.3.2 Superposition Procedure 10.3.3 Combination with the BEM 10.3.4 Extrapolation of the Number of Segments 10.4 Three-Dimensional Dirichlet Problems 10.5 Examples of Applications of the Boundary-Element Method 11 The Finite-Difference Method (FDM) 11.1 The Choice of Grid 11.2 The Taylor Series Method 11.3 The Integration Method 11.4 Nine-Point Formulae 11.5 The Finite-Difference Method in Three Dimensions 11.6 Other Aspects of the Method 11.6.1 Expanding Spherical-Mesh Grid 11.6.2 Extrapolation on Multiple Grids 11.6.3 Combination with the BEM 11.7 Iterative Solution Techniques 12 The Finite-Element Method (FEM) 12.1 Formulation for Round Magnetic Lenses 12.2 Formulation for Self-adjoint Elliptic Equations 12.3 Solution of the Finite-Element Equations 12.4 Improvement of the Finite-Element Method 12.4.1 Introduction 12.4.2 Alternative Formulations 12.4.3 First- and Second-Order Finite-Element Methods (FOFEM and SOFEM) 12.5 Comparison and Combination of Different Methods 12.6 Deflection Units and Multipoles 12.7 Related Work 13 Field-Interpolation Techniques 13.1 One-Dimensional Differentiation and Interpolation 13.1.1 Hermite Interpolation 13.1.2 Cubic Splines 13.1.3 Differentiation Using Difference Schemes 13.1.4 Evaluation of Radial Series Expansions 13.2 Two-Dimensional Interpolation 13.2.1 Hermite Interpolation 13.2.2 The Use of Derivatives of Higher Order 13.3 Interpolation and the Finite-Element Method Part III: The Paraxial Approximation 14 Introduction to Paraxial Equations 15 Systems with an Axis of Rotational Symmetry 15.1 Derivation of the Paraxial Ray Equations from the General Ray Equations 15.1.1 Physical Significance of the Coordinate Rotation 15.2 Variational Derivation of the Paraxial Equations 15.3 Forms of the Paraxial Equations and General Properties of their Solutions 15.3.1 Reduced Coordinates 15.3.2 Stigmatic Image Formation 15.3.3 The Wronskian 15.4 The Abbe Sine Condition and Herschel’s Condition 15.5 Some Other Transformations 16 Gaussian Optics of Rotationally Symmetric Systems: Asymptotic Image Formation 16.1 Real and Asymptotic Image Formation 16.2 Asymptotic Cardinal Elements and Transfer Matrices 16.3 Gaussian Optics as a Projective Transformation (Collineation) 16.4 Use of the Angle Characteristic to Establish the Gaussian Optical Quantities 16.5 The Existence of Asymptotes 17 Gaussian Optics of Rotationally Symmetric Systems: Real Cardinal Elements 17.1 Real Cardinal Elements for High Magnification and High Demagnification 17.2 Osculating Cardinal Elements 17.3 Inversion of the Principal Planes 17.4 Approximate Formulae for the Cardinal Elements: The Thin-Lens Approximation and the Weak-Lens Approximation Magnetic Lenses Electrostatic Lenses 18 Electron Mirrors 18.1 Introduction 18.2 The Modified Temporal Representation 18.3 The Cartesian Representation 18.4 A Quadratic Transformation 19 Quadrupole Lenses 19.1 Paraxial Equations for Quadrupoles 19.2 Transaxial Lenses 20 Cylindrical Lenses Part IV: Aberrations 21 Introduction to Aberration Theory 22 Perturbation Theory: General Formalism 23 The Relation Between Permitted Types of Aberration and System Symmetry 23.1 Introduction 23.2 N=1 23.2.1 N=1. Systems with a Plane of Symmetry 23.3 N=2 23.3.1 N=2. Systems Possessing a Plane of Symmetry 23.4 N=3 23.5 N=4 23.6 N=5 and 6 23.7 Systems with an Axis of Rotational Symmetry 23.8 Note on the Classification of Aberrations 23.8.1 Terms Independent of xo, yo (p=q=0): Aperture Aberrations 23.8.2 Terms Independent of xa, ya (r=s=0): Distortions 23.8.3 Intermediate Terms 23.8.4 Phase Shifts 23.8.5 Parasitic Aberrations 24 The Geometrical Aberrations of Round Lenses 24.1 Introduction 24.2 Derivation of the Real Aberration Coefficients 24.2.1 The Trajectory Method 24.2.2 The Eikonal Method 24.3 Spherical Aberration (Terms in xa and ya only) 24.3.1 Electrostatic case (B=0, φ ≠ const) General Relativistic Expression General Nonrelativistic Expression 24.3.2 Magnetic case (φ=const, B≠0) General Relativistic Case 24.3.3 Scherzer’s Theorem 24.3.4 Thin-Lens Approximation 24.4 Coma (Terms Linear in xo, yo) 24.4.1 Thin-Lens Formulae 24.5 Astigmatism and Field Curvature (Terms Linear in xa, ya) 24.5.1 Thin-Lens Formulae 24.6 Distortion (Terms in xo and yo only) 24.6.1 Thin-Lens Formulae 24.7 The Variation of the Aberration Coefficients with Aperture Position 24.8 Reduced Coordinates4 24.9 Seman’s Transformation of the Characteristic Function 24.10 Fifth-Order Aberrations 24.10.1 Isotropic Aberration Coefficients 24.10.2 Anisotropic Aberration Coefficients 25 Asymptotic Aberration Coefficients 25.1 Spherical Aberration 25.2 Coma 25.3 Astigmatism and Field Curvature 25.4 Distortion 25.5 Aberration Matrices and the Integrals ij 25.6 Dependence on Object Position or Magnification 25.7 Dependence on Aperture Position 25.8 Thin-Lens Approximations 26 Chromatic Aberrations 26.1 Real Chromatic Aberrations 26.2 Asymptotic Chromatic Aberrations 26.3 Higher Order Chromatic Aberration Coefficients 26.3.1 Third-Order (Fourth-Rank) Aberrations 26.3.1.1 Isotropic Aberrations 26.3.1.2 Anisotropic Aberrations 26.3.1.3 Definitions 26.3.2 Third-Rank Aberrations 27 Aberration Matrices and the Aberrations of Lens Combinations 28 The Aberrations of Mirrors and Cathode Lenses 28.1 The Modified Temporal Theory 28.2 The Cartesian Theory 28.3 Devices with Curved Cathodes 28.4 Practical Mirror Studies 29 The Aberrations of Quadrupole Lenses and Octopoles 29.1 Introduction 29.2 Geometrical Aberration Coefficients 29.3 Aperture Aberrations 29.4 Chromatic Aberrations 29.5 Quadrupole Multiplets 30 The Aberrations of Cylindrical Lenses 31 Parasitic Aberrations 31.1 Small Deviations from Rotational Symmetry; Axial Astigmatism 31.2 Classification of the Parasitic Aberrations 31.3 Numerical Determination of Parasitic Aberrations 31.3.1 Introduction 31.3.2 Use of the Finite-Difference Method 31.3.3 Use of the Finite-Element Method 31.4 The Isoplanatic Approximation 31.5 Stigmators 31.5.1 Necessary Simplifications 31.5.2 The Wave Aberration 31.5.3 The Deflection of Trajectories 31.6 Advanced Theory 31.6.1 Introduction 31.6.2 Notation 31.6.3 Further Analysis of the Aberrations, Classified by Order 31.7 The Uhlemann Effect Part V: Deflection Systems 32 Paraxial Properties of Deflection Systems 32.1 Introduction 32.2 The Paraxial Optics of Deflection Systems 32.2.1 The General Paraxial Equations 32.2.2 Ideal Deflection 32.2.3 The Dependence on the Electrical Input Signals 32.2.4 Rotation-Invariant Systems 33 The Aberrations of Deflection Systems 33.1 Pure Deflection Systems 33.1.1 Two Different Symmetries 33.1.2 Fourfold Symmetry 33.1.3 General Considerations 33.2 Deflection Systems with Magnetic Lenses 33.2.1 Geometric Aberrations 33.2.2 Chromatic Aberrations 33.3 Detailed Aberration Analyses Part VI: Computer-Aided Electron Optics 34 Numerical Calculation of Trajectories, Paraxial Properties and Aberrations 34.1 Introduction 34.2 Numerical Solution of Ordinary Differential Equations 34.2.1 The Fox–Goodwin–Numerov Method 34.2.2 The Runge–Kutta Method 34.2.3 The Predictor–Corrector Method 34.2.4 Special Considerations 34.3 Standard Applications in Electron Optics 34.3.1 Initial-Value Problems 34.3.2 Boundary-Value Problems 34.4 Differential Equations for the Aberrations 34.4.1 Electrostatic Systems With a Straight Optic Axis 34.4.2 Separation in Arbitrary Systems 34.4.3 Chromatic Shifts 34.5 Least-Squares-Fit Methods in Electron Optics 34.5.1 General Complex Formulation 34.5.2 The Determination of Deflection Aberrations 34.5.3 Some Other Examples 34.6 Determination and Evaluation of Aberration Discs 34.6.1 Fourier Analysis of the Aberrations 34.6.2 Some Practical Aspects 34.6.3 Integral Properties of Aberration Discs 34.7 Optimization Procedures 34.7.1 The Defect Function 34.7.2 The Optimization of Axial Distributions 34.7.3 The Damped Least-Squares Method 34.8 Differential Algebra 34.8.1 Introduction 34.8.2 Definition of Differential Algebras 34.8.3 Calculation of Aberration Coefficients 34.9 The Use of Computer Algebra Languages 34.9.1 Introduction 34.9.2 Computer Algebra, Its Role in Electron Optics 34.9.3 Practical Examples Notes and References Preface and Chapter 1 Part I, Chapters 2–5 Part II, Chapters 6–13 Part III, Chapters 14–20 Part IV, Chapters 21–31 Part V, Chapters 32 and 33 Part VI, Chapter 34 Conference Proceedings Index Back Cover