دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: Second
نویسندگان: Sundararajan Madihally
سری: Artech House engineering in medicine & biology series
ISBN (شابک) : 9781630817114, 1630817120
ناشر:
سال نشر: 2020
تعداد صفحات: 509
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 12 مگابایت
در صورت تبدیل فایل کتاب Principles of Biomedical Engineering به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب اصول مهندسی زیست پزشکی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Principles of Biomedical Engineering Second Edition Contents CHAPTER 1 Introduction 1.1 Overview 1.2 Roles of Bioengineers 1.3 History of Bioengineering 1.3.1 Development of Biomedical Imaging 1.3.2 Development of Dialysis 1.3.3 The Development of the Heart-Lung Machine 1.3.4 Other Devices 1.4 Sources for Information Problems Selected Bibliography CHAPTER 2 Biotransport 2.1 Overview 2.2 Fundamental Factors 2.2.1 Liquid Compartments 2.2.2 Solute Components 2.2.3 Components in the Gas Phase 2.2.4 Importance of pH 2.3 Diffusion-Mediated Transport 2.3.1 Free Diffusion 2.3.2 Facilitated Diffusion 2.3.3 Active Transport 2.4 Osmosis-Driven Transport 2.4.1 Osmolarity 2.4.2 Tonicity 2.4.3 Osmotic Pressure 2.5 Combined Osmosis and Pressure Gradient-Driven Transport 2.6 Transport of Macromolecules Problems References CHAPTER 3 Bioelectrical Phenomena 3.1 Overview 3.2 Membrane Potential 3.2.1 Nernst Equation 3.2.2 Donnan Equilibrium 3.2.3 Goldman Equation 3.3 Electrical Equivalent Circuit 3.3.1 Cell Membrane Conductance 3.3.2 Cell Membrane as a Capacitor 3.3.3 Resistance-Capacitance Circuit 3.3.4 Action Potential 3.4 Principles of Bioelectrodes 3.4.1 Electrode-Electrolyte Interface 3.4.2 Potential Monitoring Electrodes 3.4.3 Amperometric Devices 3.4.4 Intracellular Recording of Bioelectricity 3.5 Volume Conductors 3.5.1 Electric Field 3.5.2 Electrical Potential Energy 3.5.3 Conservation of Charge 3.5.4 Measuring Electrical Activity of Tissues: Example of Electrocardiogram 3.5.5 Biopotential Recording Practicalities Problems References Selected Bibliography CHAPTER 4 Biofluid Flow 4.1 Overview 4.2 Fluid Flow Characteristics 4.2.1 Conservation of Mass 4.2.2 Inertial and Viscous Forces 4.2.3 Conservation of Momentum 4.3 Nonidealities in Biological Systems 4.3.1 Oscillatory and Pulsating Flows 4.3.2 Alterations in Viscosity 4.3.3 Fluid Flow in Microelectromechanical Systems (MEMS) 4.4 Conservation of Energy 4.4.1 Different Energy Forms 4.4.2 Energy Balance in the Body 4.4.3 Energy Expenditure Calculations 4.5 Fluid Power 4.5.1 Power Calculations in a Cardiac Cycle 4.5.2 The Efficiency of a Pump 4.5.3 Pumps in Series and Parallel 4.6 Optimization Principle for Fluid Transport 4.6.1 Minimum Work of Circulation Problems References Selected Bibliography CHAPTER 5 Biomechanics 5.1 Overview 5.2 Conservation of Momentum in Solids 5.2.1 Different Forces Acting on the Body 5.2.2 Angular Motion 5.2.3 Impulse-Momentum Relation 5.2.4 Gait Analysis (Motion Analysis) 5.3 Ideal Stress-Strain Characteristics 5.3.1 Structural Parameters and Material Parameters 5.3.2 Axial Stress and Strain 5.3.3 Shear Stress 5.3.4 Bending 5.3.5 Torsion 5.4 Nonidealities in Stress-Strain Characterization 5.4.1 Failure Under Combined Loading 5.4.2 Viscoelastic Characteristics 5.4.3 Dynamic Loading 5.5 Conservation of Energy in Solids 5.5.1 Work-Energy Relation 5.5.2 Energy Absorption Problems References Selected Bibliography CHAPTER 6 Biomaterials 6.1 Overview 6.2 Types of Biomaterials 6.2.1 Metals and Alloys 6.2.2 Ceramics 6.2.3 Polymers 6.2.4 Biological Materials 6.2.5 Composites 6.3 Material Characteristics 6.3.1 Mechanical Performance 6.3.2 Mechanical Durability 6.3.3 Corrosion and Degradation 6.3.4 Surface Roughness 6.3.5 Sterilization Techniques 6.4 Physiological Responses to Biomaterials 6.4.1 Toxicity Analysis 6.4.2 Surface Adhesion 6.4.3 Blood-Material Interactions 6.4.4 Inflammatory Response 6.4.5 Infection 6.5 Tissue Engineering 6.5.1 Material Used in Tissue Regeneration 6.5.2 Scaffold Formation Techniques Problems References Selected Bibliography CHAPTER 7 Cellular Engineering 7.1 Overview 7.2 Cell Culture 7.2.1 Microenvironment 7.2.2 Proliferation and Differentiation 7.2.3 Bioreactors 7.2.4 Different Modes of Operation 7.3 Characterization and Utilization of Products 7.3.1 Purification of Products 7.3.2 Soluble Factor Interactions 7.3.3 Enzyme-Based Biosensors 7.3.4 Antibody-Based Biosensors 7.3.5 Nucleic Acid-Based Biosensors 7.3.6 Immobilization Strategies 7.4 Cellular Processes 7.4.1 Cell-Matrix Interactions 7.4.2 Cell-Cell Interactions 7.4.3 Metabolism 7.4.4 Intracellular Degradation 7.5 Storage of Cells and Tissues 7.5.1 Long-Term Storage of Cells 7.5.2 Storage of Tissues 7.5.3 Microarray Technology 7.6 Bioinformatics Problems References Selected Bibliography CHAPTER 8 Biomedical Imaging 8.1 Overview 8.2 Properties of Light 8.2.1 Electromagnetic Spectrum 8.2.2 Energy in an EM Wave 8.2.3 Generation of EM Radiation 8.3 Interaction of Radiation with Matter 8.3.1 Absorption of EM Waves 8.3.2 Scattering of EM Waves 8.3.3 Transmission Imaging 8.4 Basics of Imaging 8.4.1 Image Acquisition 8.4.2 Digitizing Images 8.4.3 The 3-D Image Reconstruction 8.4.4 Image Quality 8.5 Imaging Devices 8.5.1 X-Ray Imaging 8.5.2 PET 8.5.3 MRI 8.5.4 Ultrasound Imaging 8.5.5 Optical Coherence Tomography (OCT) 8.5.6 Endoscopes 8.5.7 Fluorescence Imaging Problems References Selected Bibliography CHAPTER 9 Modeling Complex Systems 9.1 Overview 9.2 Compartmental Modeling 9.2.1 Chemical Compartmental Model 9.2.2 The Apparent Volume of Distribution 9.2.3 Other Single Compartmental Systems 9.2.4 Multicompartmental Models 9.3 Special Cases of Compartmental Modeling 9.3.1 Modeling Dialysis 9.3.2 Cable Theory 9.4 Modeling Diffusion-Limited Processes 9.4.1 Case 1: Reaction-Diffusion in Cartesian coordinates. 9.4.2 Case 2: The Krogh Tissue Cylinder 9.4.3 Case 3: A 1-D Radial Diffusion in Spherical Coordinates 9.4.4 Case 4: Cell Migration 9.4.5 Complex Model Systems Problems References Selected Bibliography CHAPTER 10 Ethics and Regulatory Affairs 10.1 Overview 10.2 Complexities of Bioethics 10.2.1 Bioethics in the Context of Ethical Theories 10.2.2 The Difference Between Ethics and Law 10.2.3 Influence of Religion and Culture 10.3 Research Testing 10.3.1 The Declaration of Helsinki 10.3.2 Belmont Report 10.3.3 Institutional Review Board (IRB) 10.3.4 Informed Consent 10.4 Safety Standards 10.4.1 Standards and Guidelines 10.4.2 International Electromedical Commission (IEC) 10.4.3 ISO 10.5 Regulatory Agencies 10.5.1 The FDA 10.5.2 Device Classification 10.5.3 Compliance Requirements Problems Reference Selected Bibliography About the Author Index