دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 1
نویسندگان: Punit Prakash (editor). Govindarajan Srimathveeravalli (editor)
سری:
ISBN (شابک) : 0128205946, 9780128205945
ناشر: Academic Press
سال نشر: 2021
تعداد صفحات: 424
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 10 مگابایت
در صورت تبدیل فایل کتاب Principles and Technologies for Electromagnetic Energy Based Therapies به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب اصول و فن آوری برای درمان های مبتنی بر انرژی الکترومغناطیسی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Front Cover PRINCIPLES AND TECHNOLOGIES FOR ELECTRO MAGNETIC ENERGY BASED PRINCIPLES AND TECHNOLOGIES FOR ELECTRO MAGNETIC ENERGY BASED Copyright Contents List of contributors Preface 1 - Mathematical modeling of heat transfer in biological tissues (bioheat transfer) 1.1 Introduction 1.2 Mathematical models of bioheat transfer 1.3 Thermal tissue properties 1.3.1 Specific heat capacity 1.3.2 Thermal conductivity 1.3.3 Blood perfusion 1.3.4 Thermal diffusivity 1.3.5 Temperature dependence of thermal tissue properties 1.3.6 Coupling between electromagnetic and heat-transfer equations 1.4 Arrhenius model 1.4.1 Modeling of blood perfusion change in response to hyperthermia 1.4.2 Sensitivity of bioheat models to tissue property variations 1.5 Experimental studies 1.6 Example of a bioheat transfer model 1.6.1 How to run the example model 1.6.2 Model results and interpretation References 2 - Review of computational methods for therapeutic electromagnetic technologies 2.1 Introduction 2.2 Mathematical preliminaries 2.2.1 Maxwell\'s equations 2.2.2 Electrostatic and volume conductor formulations 2.2.3 Current conservation formulations 2.2.4 Bioheat formulation 2.2.5 Boundary conditions 2.2.6 Infinite domains 2.3 Numerical techniques 2.3.1 FDTD method 2.3.2 FE method 2.3.3 FE method example: the isopotential disc electrode 2.3.4 BE method References 3 - Pulsed electric fields 3.1 Background and history of electroporation 3.1.1 Bioelectrics and external electric fields 3.1.2 The discovery and development of electroporation 3.2 Biological basis of electroporation 3.2.1 Electroporation as a molecular phenomenon 3.2.2 Cell behavior in an electric field 3.2.3 Modeling the cell as an electrical circuit 3.2.4 The interaction between electric pulse parameters and cellular biology 3.2.4.1 Pulse parameters 3.2.4.2 Physiological factors affecting EP 3.2.5 Computational models of electroporation in bulk tissue 3.2.5.1 Fundamental electromagnetic equations and electroporation thresholds 3.2.5.2 Interaction between tissue conductivity and EP 3.2.5.3 Thermal considerations during EP 3.2.5.4 Stochastic models of pulse application and cell death 3.2.5.5 EP-related neuromuscular stimulation and its mitigation 3.2.5.6 Other biophysical effects 3.3 Generator design 3.3.1 Introduction 3.3.2 Capacitance-based systems 3.3.3 Other approaches 3.4 Electrode design 3.4.1 Types of electrodes used for EP 3.4.2 Key considerations for electrode design 3.5 Models and monitoring of EP 3.5.1 In vitro 3.5.2 Vegetable model 3.5.3 Conductivity monitoring 3.5.4 Ex vivo 3.5.5 In vivo 3.6 Medical applications of EP and related technologies 3.6.1 Ablation 3.6.1.1 Cancer 3.6.1.2 Cardiac 3.6.1.3 Veterinary 3.6.2 Vaccination and gene therapy 3.7 Summary References 4 - Radiofrequency ablation 4.1 Fundamental principles 4.1.1 Definitions 4.1.2 Interaction between radiofrequency energy and biological tissue 4.1.3 Historical perspective 4.2 Instrumentation and system design 4.2.1 Radiofrequency ablation electrodes 4.2.2 Radiofrequency ablation generators 4.2.3 How to protect surrounding tissues 4.3 Preclinical evaluation 4.3.1 Bench test 4.3.2 Preclinical experimental studies 4.4 Clinical applications 4.4.1 Tumor ablation 4.4.2 Ablation of cardiac arrhythmias 4.5 Conclusions Financial support References 5 - Microwave ablation: physical principles and technology 5.1 Components of a microwave ablation system 5.2 Biophysics of MWA 5.2.1 Computational models of microwave ablation 5.3 MWA applicator design 5.3.1 Cable selection: interconnecting cable and applicator shaft 5.3.2 Antenna design metrics 5.3.3 Example: analysis of a water-cooled monopole antenna 5.3.4 Consideration of system operating frequency 5.3.5 Emerging microwave ablation antenna designs 5.3.6 Applicators with asymmetric ablation patterns 5.4 Power delivery considerations 5.5 Experimental assessment of ablation applicators 5.6 Summary References 6 - Treating solid tumors using tumor treating fields: an overview of the theory and practices 6.1 Introduction 6.2 Section 1. Theory of TTFields 6.3 Section 2. What TTFields does within the cell—experimental evidence 6.4 Overview of cell cycle 6.5 Stages of the cell cycle 6.6 Effect of TTFields on cellular division 6.7 Mechanism of action of TTFields 6.8 TTFields effect is frequency, intensity, and time-dependent 6.9 The effect of TTFields is directional 6.10 Mechanism of action: what do TTFields actually do to cells? 6.11 Other effects of TTFields on cells 6.12 Modeling the effect of TTFields on cells 6.13 Some basic considerations when analyzing the effect of TTFields on subcellular structures 6.14 Power deposited by TTFields in a cell 6.15 Dipole alignment and dielectrophoresis effects of TTFields 6.16 Dipole alignment 6.17 Dielectrophoresis 6.18 Other theories on how TTFields may influence cell proliferation 6.19 Section 3. Clinical applications of TTFields 6.19.1 Designing a device for delivering TTFields in the clinical setting 6.20 A brief overview of the use of TTFields in the clinic 6.21 Section 4. TTFields distribution in the body 6.22 Numerically simulating delivery of TTFields 6.22.1 Governing equations 6.23 Numerical simulations of TTFields distribution in the body 6.24 The stages in creating the simulations 6.25 Model creation 6.26 Imaging data 6.27 Modeling brain tumors 6.28 Assigning electric properties to tissues and tumors 6.29 Deriving electric properties from images 6.30 Setting boundary conditions and solving the model 6.31 The equation 6.32 The solver 6.33 Boundary conditions 6.34 Section 5. TTFields dosimetry 6.35 Section 6. Summary—TTFields dosimetry and treat planning References 7 - Neural stimulation technologies 7.1 Introduction to neural stimulation 7.2 A noninvasive approach 7.2.1 Functional electrical stimulation 7.2.1.1 Basic principles 7.2.1.2 Technical requirements 7.2.1.3 Example applications 7.2.1.4 Future trends 7.3 Invasive approaches 7.3.1 Implantable neural interfaces 7.3.1.1 Vagus nerve stimulation 7.3.2 Deep brain stimulation 7.3.3 Cochlear implants 7.4 Neurostimulation in cerebral palsy as a case study References 8 - Electric field and wound healing 8.1 Introduction: electrotherapy as a promising solution to the problem of nonhealing chronic ulcers 8.2 Wound healing process requires cross-talk between multiple cell types: an overview 8.3 Physiological EF generation in wounds 8.4 Electric field and cell migration: an overriding guidance cues and the effects of EF on cell signaling mechanisms 8.5 Different EF modalities for wound healing therapy 8.5.1 Currently existing EF modalities for electrical wound stimulation 8.5.2 Low-frequency pulsed electromagnetic fields 8.5.3 Wireless EF stimulation of wound healing and the critical role of EF frequency in the regulation of cell responses 8.5.4 Emerging therapies 8.6 Future prospective for EF therapies for chronic ulcers References 9 - Radiofrequency and microwave hyperthermia in cancer treatment 9.1 Introduction 9.2 Hyperthermia physics 9.2.1 Electromagnetic mechanisms of heating 9.2.2 Maxwell\'s equations 9.2.3 Heat transfer 9.3 Electromagnetic-based heating systems 9.3.1 Hyperthermia modalities 9.3.2 Components of heating systems 9.3.2.1 RF/MW signal pathway 9.3.2.2 Thermometry 9.3.2.3 Feedback loop coupling hyperthermia treatment planning with thermometry 9.3.2.4 Case study—annular phased array system 9.4 Thermal dosimetry 9.5 Treatment planning 9.5.1 SAR modeling 9.5.2 Temperature modeling 9.5.3 Optimization 9.6 Treatment guidance 9.7 Hyperthermia clinical studies 9.7.1 Hyperthermia and radiation 9.7.2 Hyperthermia and chemotherapy 9.7.3 Summary of key HT clinical trials 9.8 Future outlook Acknowledgments References 10 - History and development of microwave thermal therapy∗ 10.1 Introduction and background 10.1.1 Hyperthermia 10.1.2 Ablation 10.1.3 Milestones of thermal therapy 10.2 Hyperthermia to ablation [three phases: EARLY (hyperthermia), CURRENT (ablation), FUTURE (ablation)] 10.2.1 Experimental performance characterization and verification 10.2.1.1 EARLY 10.2.1.2 CURRENT 10.2.1.3 FUTURE 10.2.2 Single antenna development 10.2.2.1 EARLY 10.2.2.2 CURRENT 10.2.2.3 FUTURE 10.2.3 Multiple antennas and arrays 10.2.3.1 EARLY 10.2.3.2 CURRENT 10.2.4 Clinical use 10.2.4.1 EARLY 10.2.4.2 CURRENT 10.2.5 Treatment planning 10.2.5.1 EARLY 10.2.5.2 CURRENT 10.2.5.3 FUTURE 10.2.6 Clinical thermal treatment 10.2.6.1 EARLY 10.2.6.2 CURRENT 10.2.6.3 FUTURE 10.2.7 Modeling with computer simulations 10.2.7.1 EARLY 10.2.7.2 CURRENT 10.2.8 Navigation 10.2.8.1 EARLY 10.2.8.2 CURRENT 10.2.8.3 FUTURE 10.2.9 Thermal enhancement 10.3 Summary References 11 - Nano-pulse stimulation, a nonthermal energy modality for targeting cells 11.1 Nano-pulse stimulation of cells 11.1.1 Nanoporation: a new method of electroporation 11.2 Nanoporation targets both the plasma membrane and organelle membranes 11.3 Practical applications of nano-pulse stimulation 11.4 NPS effects on skin 11.4.1 Seborrheic keratosis 11.4.2 Sebaceous hyperplasia 11.4.3 Cutaneous warts 11.5 Development and translation 11.5.1 Design controls 11.5.2 Patent protection 11.5.3 Teamwork References 12 - FDA regulation of energy-based therapy devices 12.1 FDA premarket regulatory framework 12.2 General controls 12.3 510(k) premarket notification 12.3.1 De novo submission 12.4 PMA pathway 12.5 Case studies 12.6 510(k) example 12.6.1 Summary of nonclinical/bench studies 12.6.2 Summary of clinical testing 12.6.3 Summary of usability testing 12.7 De novo example 12.7.1 Summary of nonclinical/bench studies 12.7.2 Summary of clinical testing 12.7.3 Summary of usability 12.8 PMA example 12.8.1 Summary of nonclinical/bench studies 12.8.2 Summary of clinical testing 12.8.3 Summary of usability 12.9 Conclusion 13 - Clinical trials with electromagnetic ablation technologies 13.1 Introduction 13.2 Ethical considerations 13.2.1 Helsinki and Institutional Review Board 13.2.2 Prerequisites for clinical evaluation of an ablation device 13.3 Human studies 13.3.1 Trial design 13.3.2 Feasibility and safety of the procedures 13.3.2.1 Rationale 13.3.2.2 Methods 13.3.2.3 Challenges 13.3.3 Tolerance and efficacy 13.3.3.1 Rationale 13.3.3.2 Methods 13.3.3.3 Challenges 13.3.4 Comparative evaluation with reference standard 13.3.4.1 Rationale 13.3.4.2 Methods 13.3.4.3 Challenges 13.3.5 Long-term evaluation 13.3.5.1 Rationale 13.3.5.2 Methods 13.3.5.3 Challenges 13.4 Conclusion References Index Back Cover