دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: [3 ed.]
نویسندگان: Christos Christopoulos
سری: Electronic engineering systems
ISBN (شابک) : 9781003310983, 9780367533618
ناشر: CRC Press
سال نشر: 2023
تعداد صفحات: 462
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 16 Mb
در صورت تبدیل فایل کتاب Principles and techniques of electromagnetic compatibility به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب اصول و تکنیک های سازگاری الکترومغناطیسی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Cover Half Title Series Page Title Page Copyright Page Dedication Table of Contents Preface to the Third Edition Preface to the Second Edition Preface Author PART I: Underlying Concepts and Techniques Chapter 1 Introduction to Electromagnetic Compatibility Chapter 2 Electromagnetic Fields 2.1 Static Fields 2.1.1 Electric Field 2.1.2 Magnetic Field 2.2 Quasistatic Fields 2.2.1 The Relationship Between Circuits and Fields 2.2.2 Electromagnetic Potentials 2.3 High-Frequency Fields 2.3.1 Electromagnetic Waves 2.3.2 Radiating Systems References Chapter 3 Electrical Circuit Components 3.1 Lumped Circuit Components 3.1.1 Ideal Lumped Components 3.1.2 Real Lumped Components 3.2 Distributed Circuit Components 3.2.1 Time-Domain Analysis of Transmission Lines 3.2.2 Frequency-Domain Analysis of Transmission Lines References Chapter 4 Electrical Signals and Circuits 4.1 Representation of a Signal in Terms of Simpler Signals 4.2 Correlation Properties of Signals 4.2.1 General Correlation Properties 4.2.2 Random Signals 4.3 The Response of Linear Circuits to Deterministic and Random Signals 4.3.1 Impulse Response 4.3.2 Frequency Response 4.3.3 Detection of Signals in Noise 4.4 The Response of Nonlinear Circuits 4.5 Characterization of Noise References PART II: General EMC Concepts and Techniques Chapter 5 Sources of Electromagnetic Interference 5.1 Classification of Electromagnetic Interference Sources 5.2 Natural Electromagnetic Interference Sources 5.2.1 Low-Frequency Electric and Magnetic Fields 5.2.2 Lightning 5.2.3 High-Frequency Electromagnetic Fields 5.3 Man-Made Electromagnetic Interference Sources 5.3.1 Radio Transmitters 5.3.2 Electroheat Applications 5.3.3 Digital Signal Processing and Transmission 5.3.4 Power Conditioning and Transmission 5.3.4.1 Low-Frequency Conducted Interference 5.3.4.2 Low-Frequency Radiated Interference 5.3.4.3 High-Frequency Conducted Interference 5.3.4.4 High-Frequency Radiated Interference 5.3.5 Switching Transients 5.3.5.1 Nature and Origin of Transients 5.3.5.2 Circuit Behavior during Switching Assuming an Idealized Switch 5.3.5.3 Circuit Behavior during Switching Assuming a Realistic Model of the Switch 5.3.6 The Electrostatic Discharge (ESD) 5.3.7 The Nuclear Electromagnetic Pulse (NEMP) and High Power Electromagnetics (HPEM) 5.4 Surveys of the Electromagnetic Environment References Chapter 6 Penetration through Shields and Apertures 6.1 Introduction 6.2 Shielding Theory 6.2.1 Shielding Effectiveness 6.2.2 Approximate Methods—The Circuit Approach 6.2.3 Approximate Methods—The Wave Approach 6.2.4 Analytical Solutions to Shielding Problems 6.2.5 General Remarks Regarding Shielding Effectiveness at Different Frequencies 6.2.6 Surface Transfer Impedance and Cable Shields 6.3 Aperture Theory 6.4 Rigorous Calculation of the Shielding Effectiveness (SE) of a Conducting Box with an Aperture 6.5 Intermediate Level Tools for SE Calculations 6.6 Numerical Simulation Methods for Penetration through Shields and Apertures 6.6.1 Classification of Numerical Methods 6.6.2 The Application of Frequency-Domain Methods 6.6.3 The Application of Time-Domain Methods 6.7 Treatment of Multiple Apertures through a Digital Filter Interface 6.8 Further Work Relevant to Shielding References Chapter 7 Propagation and Crosstalk 7.1 Introduction 7.2 Basic Principles 7.3 Line Parameter Calculation 7.3.1 Analytical Methods 7.3.2 Numerical Methods 7.4 Representation of EM Coupling from External Fields 7.5 Determination of the EM Field Generated by Transmission Lines 7.6 Numerical Simulation Methods for Propagation Studies References Chapter 8 Simulation of the Electromagnetic Coupling between Systems 8.1 Overview 8.2 Source/External Environment 8.3 Penetration and Coupling 8.4 Propagation and Crosstalk 8.5 Device Susceptibility and Emission 8.6 Numerical Simulation Methods 8.6.1 The Finite-Difference Time-Domain (FD-TD) Method 8.6.2 The Transmission-Line Modeling (TLM) Method 8.6.3 The Method of Moments (MM) 8.6.4 The Finite-Element (FE) Method 8.7 EMC Modeling of Complex Systems References Chapter 9 Effects of Electromagnetic Interference on Devices and Systems 9.1 Immunity of Analogue Circuits 9.2 The Immunity of Digital Circuits 9.3 Effects of Intentional EMI on Infrastructure Systems 9.4 EMI Risk Management References PART III: Interference Control Techniques Chapter 10 Shielding and Grounding 10.1 Equipment Screening 10.1.1 Practical Levels of Attenuation 10.1.2 Screening Materials 10.1.3 Conducting Penetrations 10.1.4 Slits, Seams, and Gasketing 10.1.5 Damping of Resonances 10.1.6 Measurement of Screening Effectiveness 10.2 Cable Screening 10.2.1 Cable Transfer Impedance 10.2.2 Earthing of Cable Screens 10.2.3 Cable Connectors 10.3 Grounding 10.3.1 Grounding in Large-Scale Systems 10.3.2 Grounding in Self-Contained Equipment 10.3.3 Grounding in an Environment of Interconnected Equipment 10.4 Novel Materials and EMC 10.4.1 Metamaterials 10.4.2 Nanomaterials References Chapter 11 Filtering and Nonlinear Protective Devices 11.1 Power-Line Filters 11.2 Isolation 11.3 Balancing 11.4 Signal-Line Filters 11.5 Nonlinear Protective Devices References Chapter 12 General EMC Design Principles 12.1 Reduction of Emission at Source 12.2 Reduction of Coupling Paths 12.1.1 Operating Frequency and Rise-Time 12.2.2 Reflections and Matching 12.2.3 Ground Paths and Ground Planes 12.2.4 Circuit Segregation and Placement 12.2.5 Cable Routing 12.3 Improvements in Immunity 12.3.1 Immunity by Software Design 12.3.2 Spread Spectrum Techniques 12.4 The Management of EMC References PART IV: EMC Standards and Testing Chapter 13 EMC Standards 13.1 The Need for Standards 13.2 The International Framework 13.3 Civilian EMC Standards 13.3.1 FCC Standards 13.3.2 European Standards 13.3.3 Other EMC Standards 13.3.4 Sample Calculation for Conducted Emission 13.4 Military Standards 13.4.1 Military Standard MIL-STD-461D 13.4.2 Defense Standard DEF-STAN 59–41 13.5 Company Standards 13.6 Power Quality, Electrical Drives, and Smart Grids 13.7 EMC at Frequencies above 1 GHz 13.8 Human Exposure Limits to EM Fields References Chapter 14 EMC Measurements and Testing 14.1 EMC Measurement Techniques 14.2 Measurement Tools 14.2.1 Sources 14.2.2 Receivers 14.2.3 Field Sensors 14.2.4 Antennas 14.2.5 Assorted Instrumentation 14.3 Test Environments 14.3.1 Open-Area Test Sites 14.3.2 Screened Rooms 14.3.3 Reverberating Chamber Basics 14.3.4 Reverberating Chamber Characterization and Modeling 14.3.5 Special EMC Test Cells References PART V: EMC in Systems Design Chapter 15 EMC and Signal Integrity (SI) 15.1 Introduction 15.2 Transmission Lines as Interconnects 15.3 Board and Chip Level EMC 15.3.1 Simultaneous Switching Noise (SSN) 15.3.2 Physical Models 15.3.3 Behavioral Models — IBIS 15.3.4 Near-Field Scans 15.3.5 Analytical Approaches to Complexity Reduction References Chapter 16 EMC and Wireless Technologies 16.1 The Efficient Use of the Frequency Spectrum 16.2 EMC, Interoperability, and Coexistence 16.3 Specifications and Alliances 16.4 Internet of Things (IoT) and EMC 16.5 Wireless Power Transfer (WPT) and EMC 16.6 Characterization and Testing of Wireless Systems Performance in Resonant Environments 16.7 EMC Testing in the Time Domain 16.8 Conclusions References Chapter 17 EMC and Broadband Technologies 17.1 Transmission of High-Frequency Signals over Telephone and Power Networks 17.2 EMC and Digital Subscriber Lines 17.3 EMC and Power Line Telecommunications (PLT) 17.4 Regulatory Framework for Emissions from xDSL/PLT and Related Technologies References Chapter 18 EMC and Safety References Chapter 19 Statistical EMC 19.1 Introduction 19.2 The Basic Stochastic Problem 19.3 Statistical Approaches to EMC Problems 19.4 Theoretical Basis for Stochastic Models 19.4.1 Gaussian Quadrature, Polynomial Chaos Expansion, Statistical Collocation, and Unscented Transform 19.4.2 The Curse of Dimensionality 19.5 Applications of Stochastic Models in EMC References Chapter 20 EMC in Different Industrial Sectors 20.1 EMC in Automotive Applications 20.2 EMC in Railway Applications 20.3 EMC in Aerospace Applications 20.4 EMC in Marine Applications References Chapter 21 EMC Outlook References Appendix A: Useful Vector Formulae Appendix B: Circuit Parameters of Some Conductor Configurations Appendix C: The sinx/x Function Appendix D: Spectra of Trapezoidal Waveforms Appendix E: Calculation of the Electric Field Received by a Short Electric Dipole Appendix F: Calculation of the Parameters of a Series RLC Circuit Appendix G: Computation of the Discrete Time-Domain Responses of Lumped Circuits Appendix H: The Normal (Gaussian) Distribution Index