دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: Third
نویسندگان: Jaime Benitez
سری:
ISBN (شابک) : 9781119042730, 1119042739
ناشر:
سال نشر: 2017
تعداد صفحات: 619
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 24 مگابایت
در صورت تبدیل فایل کتاب Principles and modern applications of mass transfer operations به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب اصول و کاربردهای مدرن عملیات انتقال جرم نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
یک عنصر اصلی در هر برنامه درسی مهندسی شیمی ویرایش جدید تاکید قوی تری بر جداسازی غشاء، کروماتوگرافی و سایر فرآیندهای جذبی دارد، تبادل یونی بسیاری از موضوعات در حال توسعه را با عمق بیشتری در عملیات انتقال جرم، به ویژه در حوزه مهندسی بیولوژیکی مورد بحث قرار می دهد. محاسبات تقطیر کاملاً وابسته به این اصل است.
A staple in any chemical engineering curriculum New edition has a stronger emphasis on membrane separations, chromatography and other adsorptive processes, ion exchange Discusses many developing topics in more depth in mass transfer operations, especially in the biological engineering area Covers in more detail phase equilibrium since distillation calculations are completely dependent on this principle Integrates computational software and problems using Mathcad Features 25-30 problems per chapter
PRINCIPLES AND MODERN APPLICATIONS OF MASS TRANSFER OPERATIONS Table of Contents Preface to the Third Edition Preface to the Second Edition Preface to the First Edition Nomenclature 1. FUNDAMENTALS OF MASS TRANSFER 1.1 INTRODUCTION 1.2 MOLECULAR MASS TRANSFER 1.2.1 Concentrations 1.2.2 Velocities and Fluxes 1.2.3 The Maxwell–Stefan Relations 1.2.4 Fick’s First Law for Binary Mixtures 1.3 THE DIFFUSION COEFFICIENT 1.3.1 Diffusion Coefficients for Binary Ideal Gas Systems 1.3.2 Diffusion Coefficients for Dilute Liquids 1.3.3 Diffusion Coefficients for Concentrated Liquids 1.3.4 Effective Diffusivities in Multicomponent Mixtures 1.4 STEADY-STATE MOLECULAR DIFFUSION IN FLUIDS 1.4.1 Molar Flux and the Equation of Continuity 1.4.2 Steady-State Molecular Diffusion in Gases 1.4.3 Steady-State Molecular Diffusion in Liquids 1.5 STEADY-STATE DIFFUSION IN SOLIDS 1.5.1 Steady-State Binary Molecular Diffusion in Porous Solids 1.5.2 Knudsen Diffusion in Porous Solids 1.5.3 Hydrodynamic Flow of Gases in Porous Solids 1.5.4 “Dusty Gas” Model for Multicomponent Diffusion 1.6 DIFFUSION WITH HOMOGENEOUS CHEMICAL REACTION 1.7 ANALOGIES AMONG MOLECULAR TRANSFER PHENOMENA PROBLEMS REFERENCES 2. CONVECTIVE MASS TRANSFER 2.1 INTRODUCTION 2.2 MASS-TRANSFER COEFFICIENTS 2.2.1 Diffusion of A Through Stagnant B (NB = 0, ΨA = 1) 2.2.2 Equimolar Counterdiffusion (NB = – NA, ΨA = undefined) 2.3 DIMENSIONAL ANALYSIS 2.3.1 The Buckingham Method 2.4 FLOW PAST FLAT PLATE IN LAMINAR FLOW; BOUNDARY LAYER THEORY 2.5 MASS- AND HEAT-TRANSFER ANALOGIES 2.6 CONVECTIVE MASS-TRANSFER CORRELATIONS 2.6.1 Mass-Transfer Coefficients for Flat Plates 2.6.2 Mass-Transfer Coefficients for a Single Sphere 2.6.3 Mass-Transfer Coefficients for Single Cylinders 2.6.4 Turbulent Flow in Circular Pipes 2.6.5 Mass Transfer in Packed and Fluidized Beds 2.6.6 Mass Transfer in Hollow-Fiber Membrane Modules 2.7 ESTIMATION OF MULTICOMPONENT MASS-TRANSFER COEFFICIENTS PROBLEMS REFERENCES 3. INTERPHASE MASS TRANSFER 3.1 INTRODUCTION 3.2 EQUILIBRIUM 3.3 DIFFUSION BETWEEN PHASES 3.3.1 Two-Resistance Theory 3.3.2 Overall Mass-Transfer Coefficients 3.3.3 Local Mass-Transfer Coefficients–General Case 3.4 MATERIAL BALANCES 3.4.1 Countercurrent Flow 3.4.2 Cocurrent Flow 3.4.3 Batch Processes 3.5 EQUILIBRIUM-STAGE OPERATIONS PROBLEMS REFERENCES 4. EQUIPMENT FOR GAS–LIQUID MASS-TRANSFER OPERATIONS 4.1 INTRODUCTION 4.2 GAS–LIQUID OPERATIONS: LIQUID DISPERSED 4.2.1 Types of Packing 4.2.2 Liquid Distribution 4.2.3 Liquid Holdup 4.2.4 Pressure Drop 4.2.5 Mass-Transfer Coefficients 4.3 GAS–LIQUID OPERATIONS: GAS DISPERSED 4.3.1 Sparged Vessels (Bubble Columns) 4.3.2 Tray Towers 4.3.3 Tray Diameter 4.3.4 Tray Gas-Pressure Drop 4.3.5 Weeping and Entrainment 4.3.6 Tray Efficiency PROBLEMS REFERENCES 5. ABSORPTION AND STRIPPING 5.1 INTRODUCTION 5.2 COUNTERCURRENT MULTISTAGE EQUIPMENT 5.2.1 Graphical Determination of the Number of Ideal Trays 5.2.2 Tray Efficiencies and Real Trays by Graphical Methods 5.2.3 Dilute Mixtures 5.3 COUNTERCURRENT CONTINUOUS-CONTACT EQUIPMENT 5.3.1 Dilute Solutions; Henry’s Law 5.4 THERMAL EFFECTS DURING ABSORPTION AND STRIPPING 5.4.1 Adiabatic Operation of a Tray Absorber 5.4.2 Adiabatic Operation of a Packed-Bed Absorber PROBLEMS REFERENCES 6. DISTILLATION 6.1 INTRODUCTION 6.2 SINGLE-STAGE OPERATION–FLASH VAPORIZATION 6.3 DIFFERENTIAL DISTILLATION 6.4 CONTINUOUS RECTIFICATION–BINARY SYSTEMS 6.5 McCABE–THIELE METHOD FOR TRAYED TOWERS 6.5.1 Rectifying Section 6.5.2 Stripping Section 6.5.3 Feed Stage 6.5.4 Number of Equilibrium Stages and Feed-Stage Location 6.5.5 Limiting Conditions 6.5.6 Optimum Reflux Ratio 6.5.7 Large Number of Stages 6.5.8 Use of Open Steam 6.5.9 Tray Efficiencies 6.6 BINARY DISTILLATION IN PACKED TOWERS 6.7 MULTICOMPONENT DISTILLATION 6.8 FENSKE-UNDERWOOD-GILLILAND METHOD 6.8.1 Total Reflux: Fenske Equation 6.8.2 Minimum Reflux: Underwood Equations 6.8.3 Gilliland Correlation for Number of Stages at Finite Reflux 6.9 RIGOROUS CALCULATION PROCEDURES FOR MULTICOMPONENT DISTILLATION 6.9.1 Equilibrium Stage Model 6.9.2 Nonequilibrium, Rate-Based Model 6.10 BATCH DISTILLATION 6.10.1 Binary Batch Distillation with Constant Reflux 6.10.2 Batch Distillation with Constant Distillate Composition 6.10.3 Multicomponent Batch Distillation PROBLEMS REFERENCES 7. LIQUID–LIQUID EXTRACTION 7.1 INTRODUCTION 7.2 LIQUID EQUILIBRIA 7.3 STAGEWISE LIQUID–LIQUID EXTRACTION 7.3.1 Single-Stage Extraction 7.3.2 Multistage Crosscurrent Extraction 7.3.3 Countercurrent Extraction Cascades 7.3.4 Insoluble Liquids 7.3.5 Continuous Countercurrent Extraction with Reflux 7.4 EQUIPMENT FOR LIQUID–LIQUID EXTRACTION 7.4.1 Mixer-Settler Cascades 7.4.2 Multicompartment Columns PROBLEMS REFERENCES 8. HUMIDIFICATION OPERATIONS 8.1 INTRODUCTION 8.2 EQUILIBRIUM CONSIDERATIONS 8.2.1 Saturated Gas–Vapor Mixtures 8.2.2 Unsaturated Gas–Vapor Mixtures 8.2.3 Adiabatic-Saturation Curves 8.2.4 Wet-Bulb Temperature 8.3 ADIABATIC GAS–LIQUID CONTACT OPERATIONS 8.3.1 Fundamental Relationships 8.3.2 Water Cooling with Air 8.3.3 Dehumidification of Air–Water Vapor PROBLEMS REFERENCES 9. MEMBRANES AND OTHER SOLID SORPTION AGENTS 9.1 INTRODUCTION 9.2 MASS TRANSFER IN MEMBRANES 9.2.1 Solution-Diffusion for Liquid Mixtures 9.2.2 Solution-Diffusion for Gas Mixtures 9.2.3 Module Flow Patterns 9.3 EQUILIBRIUM CONSIDERATIONS IN POROUS SORBENTS 9.3.1 Adsorption and Chromatography Equilibria 9.3.2 Ion-Exchange Equilibria 9.4 MASS TRANSFER IN FIXED BEDS OF POROUS SORBENTS 9.4.1 Basic Equations for Adsorption 9.4.2 Linear Isotherm 9.4.3 Langmuir Isotherm 9.4.4 Length of Unused Bed 9.4.5 Mass-Transfer Rates in Ion Exchangers 9.4.6 Mass-Transfer Rates in Chromatographic Separations 9.5 APPLICATIONS OF MEMBRANE–SEPARATION PROCESSES 9.5.1 Dialysis 9.5.2 Reverse Osmosis 9.5.3 Gas Permeation 9.5.4 Ultrafiltration and Microfiltration 9.6 APPLICATIONS OF SORPTION–SEPARATION PROCESSES PROBLEMS REFERENCES Appendix A Binary Diffusion Coefficients Appendix B Lennard–Jones Constants Appendix C Maxwell–Stefan Equations Appendix D Packed-Column Design Program Appendix E Sieve-Tray Design Program Appendix F-1 McCabe–Thiele: Liquid Feed Appendix F-2 McCabe–Thiele: Vapor Feed Appendix G-1 Single-Stage Extraction Appendix G-2 Multistage Crosscurrent Extraction Appendix H Constants and Unit Conversions Index EULA