دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Robert L. Phillips
سری:
ISBN (شابک) : 9781503614260, 9781503610002
ناشر: Stanford University Press
سال نشر: 2021
تعداد صفحات:
زبان: English
فرمت فایل : EPUB (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 12 Mb
در صورت تبدیل فایل کتاب Pricing and Revenue Optimization به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب بهینه سازی قیمت و درآمد نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
This book offers the first introduction to the concepts, theories, and applications of pricing and revenue optimization. From the initial success of "yield management" in the commercial airline industry down to more recent successes of markdown management and dynamic pricing, the application of mathematical analysis to optimize pricing has become increasingly important across many different industries. But, since pricing and revenue optimization has involved the use of sophisticated mathematical techniques, the topic has remained largely inaccessible to students and the typical manager. With methods proven in the MBA courses taught by the author at Columbia and Stanford Business Schools, this book presents the basic concepts of pricing and revenue optimization in a form accessible to MBA students, MS students, and advanced undergraduates. In addition, managers will find the practical approach to the issue of pricing and revenue optimization invaluable. With updates to every chapter, this second edition covers topics such as estimation of price-response functions and machine-learning-based price optimization. New discussions of applications of dynamic pricing and revenue management by companies such as Amazon, Uber, and Disney, and in industries such as sports, theater, and electric power, are also included. In addition, the book provides current coverage of important applications such as revenue management, markdown management, customized pricing, and the behavioral economics of pricing.
Cover Contents Preface to the Second Edition Chapter 1 Background 1.1 Historical Background and Context 1.2 The Financial Impact of Pricing and Revenue Optimization 1.3 Organization of the Book 1.4 Further Reading Chapter 2 Introduction to Pricing and Revenue Optimization 2.1 The Challenges of Pricing 2.2 Traditional Approaches to Pricing 2.3 The Scope of Pricing and Revenue Optimization 2.4 The Pricing and Revenue Optimization Process 2.5 Summary 2.6 Further Reading 2.7 Exercise Chapter 3 Models of Demand 3.1 The Price-Response Function 3.2 Measures of Price Sensitivity 3.3 Common Price-Response Functions 3.4 Summary 3.5 Further Reading 3.6 Exercise Chapter 4 Estimating Price Response 4.1 Data Sources for Price-Response Estimation 4.2 Price-Response Estimation Using Historical Data 4.3 The Estimation Process 4.4 Challenges in Estimation 4.5 Updating the Estimates 4.6 Data-Free Approaches to Estimation 4.7 Summary 4.8 Further Reading 4.9 Exercises Chapter 5 Optimization 5.1 Elements of Contribution 5.2 The Basic Price Optimization Problem 5.3 Existence and Uniqueness of Optimal Prices 5.4 Optimization with Multiple Prices 5.5 A Data-Driven Approach to Price Optimization 5.6 Competitive Response and Optimization 5.7 Optimization with Multiple Objective Functions 5.8 Summary 5.9 Further Reading 5.10 Exercises Chapter 6 Price Differentiation 6.1 The Economics of Price Differentiation 6.2 Limits to Price Differentiation 6.3 Tactics for Price Differentiation 6.4 Calculating Differentiated Prices 6.5 Price Differentiation and Consumer Welfare 6.6 Nonlinear Pricing 6.7 Summary 6.8 Further Reading 6.9 Exercises Chapter 7 Pricing with Constrained Supply 7.1 The Nature of Supply Constraints 7.2 Optimal Pricing with a Supply Constraint 7.3 Opportunity Cost 7.4 Market Segmentation and Supply Constraints 7.5 Variable Pricing 7.6 Variable Pricing in Action 7.7 Summary 7.8 Further Reading 7.9 Exercises Chapter 8 Revenue Management 8.1 History 8.2 Levels of Revenue Management 8.3 Revenue Management Strategy 8.4 The System Context 8.5 Booking Control 8.6 Tactical Revenue Management 8.7 Revenue Management Metrics 8.8 Incremental Costs and Ancillary Revenue in Revenue Management 8.9 Revenue Management in Action 8.10 Summary 8.11 Further Reading 8.12 Exercise Chapter 9 Capacity Allocation 9.1 The Two-Class Problems 9.2 Capacity Allocation with Multiple Fare Classes 9.3 Capacity Allocation with Dependent Demands 9.4 A Data-Driven Approach to Capacity Control 9.5 Capacity Allocation in Action 9.6 Measuring Capacity Allocation Effectiveness 9.7 Summary 9.8 Further Reading 9.9 Exercises Chapter 10 Network Management 10.1 When Is Network Management Applicable? 10.2 A Linear Programming Approach 10.3 Virtual Nesting* 10.4 Network Bid Pricing 10.5 Network Management in Action 10.6 Summary 10.7 Further Reading 10.8 Exercises Chapter 11 Overbooking 11.1 Background 11.2 Approaches to Overbooking 11.3 A Deterministic Heuristic 11.4 Risk-Based Policies 11.5 Service-Level Policies 11.6 Hybrid Policies 11.7 Extensions 11.8 Measuring and Managing Overbooking 11.9 Alternatives to Overbooking 11.10 Summary 11.11 Further Reading 11.12 Exercises Chapter 12 Markdown Management 12.1 Background 12.2 Markdown Optimization 12.3 Estimating Markdown Sensitivity 12.4 Strategic Customers and Markdown Management 12.5 Markdown Management in Action 12.6 Summary 12.7 Further Reading 12.8 Exercises Chapter 13 Customized Pricing 13.1 Background and Business Setting 13.2 Calculating Optimal Customized Prices 13.3 Bid Response 13.4 Extensions and Variations 13.5 Customized Pricing in Action 13.6 Summary 13.7 Further Reading 13.8 Exercises Chapter 14 Behavioral Economics and Pricing 14.1 Violations of the Law of Demand 14.2 Price Presentation and Framing 14.3 Fairness 14.4 Implications for Pricing and Revenue Optimization 14.5 Summary 14.6 Further Reading 14.7 Exercises Appendix A: Optimization A.1 Continuous Optimization A.2 Linear Programming A.3 Duality and Complementary Slackness A.4 Discrete Optimization A.5 Reinforcement Learning and Bandit Approaches A.6 Further Reading Appendix B: Probability B.1 Probability Distributions B.2 Continuous Distributions B.3 Discrete Distributions B.4 Sample Statistics References Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z