دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: [1st ed. 2022] نویسندگان: Lizhen Wang, Yuan Fang, Lihua Zhou سری: ISBN (شابک) : 9811675651, 9789811675652 ناشر: Springer سال نشر: 2022 تعداد صفحات: 310 [307] زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 14 Mb
در صورت تبدیل فایل کتاب Preference-based Spatial Co-location Pattern Mining (Big Data Management) به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب الگوی کاوی موقعیت مکانی مبتنی بر اولویت (مدیریت کلان داده) نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Foreword Preface Contents Chapter 1: Introduction 1.1 The Background and Applications 1.2 The Evolution and Development 1.3 The Challenges and Issues 1.4 Content and Organization of the Book Chapter 2: Maximal Prevalent Co-location Patterns 2.1 Introduction 2.2 Why the MCHT Method Is Proposed for Mining MPCPs 2.3 Formal Problem Statement and Appropriate Mining Framework 2.3.1 Co-Location Patterns 2.3.2 Related Work 2.3.3 Contributions and Novelties 2.4 The Novel Mining Solution 2.4.1 The Overall Mining Framework 2.4.2 Bit-String-Based Maximal Clique Enumeration 2.4.3 Constructing the Participating Instance Hash Table 2.4.4 Calculating Participation Indexes and Filtering MPCPs 2.4.5 The Analysis of Time and Space Complexities 2.5 Experiments 2.5.1 Data Sets 2.5.1.1 Synthetic Data Sets 2.5.1.2 Real Data Sets 2.5.2 Experimental Objectives 2.5.3 Experimental Results and Analysis 2.5.3.1 The Effect of Bit Strings on Enumerating Maximal Cliques 2.5.3.2 The Comparative Performance of the MCHT Algorithm 2.5.3.3 The Scalability of the MCHT Algorithm 2.5.3.4 Memory Consumption 2.5.3.5 The Evaluation of Response to Changing User Requests 2.5.3.6 Analysis of Mining Results on the Real Data Sets 2.6 Chapter Summary Chapter 3: Maximal Sub-prevalent Co-location Patterns 3.1 Introduction 3.2 Basic Concepts and Properties 3.3 A Prefix-Tree-Based Algorithm (PTBA) 3.3.1 Basic Idea 3.3.2 Algorithm 3.3.3 Analysis and Pruning 3.4 A Partition-Based Algorithm (PBA) 3.4.1 Basic Idea 3.4.2 Algorithm 3.4.3 Analysis of Computational Complexity 3.5 Comparison of PBA and PTBA 3.6 Experimental Evaluation 3.6.1 Synthetic Data Generation 3.6.2 Comparison of Computational Complexity Factors 3.6.3 Comparison of Expected Costs Involved in Identifying Candidates 3.6.4 Comparison of Candidate Pruning Ratio 3.6.5 Effects of the Parameter Clumpy 3.6.6 Scalability Tests 3.6.7 Evaluation with Real Data Sets 3.7 Related Work 3.8 Chapter Summary Chapter 4: SPI-Closed Prevalent Co-location Patterns 4.1 Introduction 4.2 Why SPI-Closed Prevalent Co-locations Improve Mining 4.3 The Concept of SPI-Closed and Its Properties 4.3.1 Classic Co-location Pattern Mining 4.3.2 The Concept of SPI-Closed 4.3.3 The Properties of SPI-Closed 4.4 SPI-Closed Miner 4.4.1 Preprocessing and Candidate Generation 4.4.2 Computing Co-location Instances and Their PI Values 4.4.3 The SPI-Closed Miner 4.5 Qualitative Analysis of the SPI-Closed Miner 4.5.1 Discovering the Correct SPI-Closed Co-location Set Omega 4.5.2 The Running Time of SPI-Closed Miner 4.6 Experimental Evaluation 4.6.1 Experiments on Real-life Data Sets 4.6.1.1 The Effectiveness of SPI-Closed Miner 4.6.1.2 The Efficiency of SPI-Closed Miner 4.6.2 Experiments with Synthetic Data Sets 4.7 Related Work 4.8 Chapter Summary Chapter 5: Top-k Probabilistically Prevalent Co-location Patterns 5.1 Introduction 5.2 Why Mining Top-k Probabilistically Prevalent Co-location Patterns (Top-k PPCPs) 5.3 Definitions 5.3.1 Spatially Uncertain Data 5.3.2 Prevalent Co-locations 5.3.3 Prevalence Probability 5.3.4 Min_PI-Prevalence Probabilities 5.3.5 Top-k PPCPs 5.4 A Framework of Mining Top-k PPCPs 5.4.1 Basic Algorithm 5.4.2 Analysis and Pruning of Algorithm 5.1 5.5 Improved Computation of P(c, min_PI) 5.5.1 0-1-Optimization 5.5.2 The Matrix Method 5.5.3 Polynomial Matrices 5.6 Approximate Computation of P(c, min_PI) 5.7 Experimental Evaluations 5.7.1 Evaluation on Synthetic Data Sets 5.7.1.1 Main Memory Cost of Algorithms 5.7.1.2 Running Time of Algorithms 5.7.1.3 Accuracy of the Approximation Algorithm 5.7.1.4 Effect of ε and δ 5.7.2 Evaluation on Real Data Sets 5.7.2.1 Running Time of Algorithms 5.8 Chapter Summary Chapter 6: Non-redundant Prevalent Co-location Patterns 6.1 Introduction 6.2 Why We Need to Explore Non-redundant Prevalent Co-locations 6.3 Problem Definition 6.3.1 Semantic Distance 6.3.2 δ-Covered 6.3.3 The Problem Definition and Analysis 6.4 The RRclosed Method 6.5 The RRnull Method 6.5.1 The Method 6.5.2 The Algorithm 6.5.3 The Correctness Analysis 6.5.4 The Time Complexity Analysis 6.5.5 Comparative Analysis 6.6 Experimental Results 6.6.1 On the Three Real Data Sets 6.6.2 On the Synthetic Data Sets 6.7 Related Work 6.8 Chapter Summary Chapter 7: Dominant Spatial Co-location Patterns 7.1 Introduction 7.2 Why Dominant SCPs Are Useful to Mine 7.3 Related Work 7.4 Preliminaries and Problem Formulation 7.4.1 Preliminaries 7.4.2 Definitions 7.4.3 Formal Problem Formulation 7.4.4 Discussion of Progress 7.5 Proposed Algorithm for Mining Dominant SCPs 7.5.1 Basic Algorithm for Mining Dominant SCPs 7.5.2 Pruning Strategies 7.5.3 An Improved Algorithm 7.5.4 Comparison of Complexity 7.6 Experimental Study 7.6.1 Data Sets 7.6.2 Efficiency 7.6.3 Effectiveness 7.6.4 Real Applications 7.7 Chapter Summary Chapter 8: High Utility Co-location Patterns 8.1 Introduction 8.2 Why We Need High Utility Co-location Pattern Mining 8.3 Related Work 8.3.1 Spatial Co-location Pattern Mining 8.3.2 Utility Itemset Mining 8.4 Problem Definition 8.5 A Basic Mining Approach 8.6 Extended Pruning Approach 8.6.1 Related Definitions 8.6.2 Extended Pruning Algorithm (EPA) 8.7 Partial Pruning Approach 8.7.1 Related Definitions 8.7.2 Partial Pruning Algorithm (PPA) 8.8 Experiments 8.8.1 Differences Between Mining Prevalent SCPs and High Utility SCPs 8.8.2 Effect of the Number of Total Instances n 8.8.3 Effect of the Distance Threshold d 8.8.4 Effect of the Pattern Utility Ratio Threshold xi 8.8.5 Effect of s in vss 8.8.6 Comparing PPA and EPA with a Different Utility Ratio Threshold xi 8.9 Chapter Summary Chapter 9: High Utility Co-location Patterns with Instance Utility 9.1 Introduction 9.2 Why We Need Instance Utility with Spatial Data 9.3 Related Work 9.4 Related Concepts 9.5 A Basic Algorithm 9.6 Pruning Strategies 9.7 Experimental Analysis 9.7.1 Data Sets 9.7.2 The Quality of Mining Results 9.7.3 Evaluation of Pruning Strategies 9.8 Chapter Summary Chapter 10: Interactively Post-mining User-Preferred Co-location Patterns with a Probabilistic Model 10.1 Introduction 10.2 Why We Need Interactive Probabilistic Post-mining 10.3 Related Work 10.4 Problem Statement 10.4.1 Basic Concept 10.4.2 Subjective Preference Measure 10.4.3 Formal Problem Statement 10.5 Probabilistic Model 10.5.1 Basic Assumptions 10.5.2 Probabilistic Model 10.5.3 Discussion 10.6 The Complete Algorithm 10.6.1 The Algorithm 10.6.2 Two Optimization Strategies 10.6.3 The Time Complexity Analysis 10.7 Experimental Results 10.7.1 Experimental Setting 10.7.2 The Simulator 10.7.3 Accuracy Evaluation on Real Data Sets 10.7.4 Accuracy Evaluation on Synthetic Data Sets 10.7.5 Sample Co-location Selection 10.8 Chapter Summary Chapter 11: Vector-Degree: A General Similarity Measure for Co-location Patterns 11.1 Introduction 11.2 Why We Measure the Similarity Between SCPs 11.3 Preliminaries 11.3.1 Spatial Co-location Pattern (SCP) 11.3.2 A Toy Example 11.3.3 Problem Statement 11.4 The Method 11.4.1 Maximal Cliques Enumeration Algorithm 11.4.2 A Representation Model of SCPs 11.4.3 Vector-Degree: the Similarity Measure of SCPs 11.4.4 Grouping SCPs Based on Vector-Degree 11.5 Experimental Evaluations 11.5.1 Data Sets 11.5.2 Results 11.6 Chapter Summary References