دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
دسته بندی: آنکولوژی ویرایش: نویسندگان: Bharat Jasani, Ralf Huss, Clive R. Taylor سری: ISBN (شابک) : 3030840867, 9783030840860 ناشر: Springer سال نشر: 2022 تعداد صفحات: 239 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 11 مگابایت
در صورت تبدیل فایل کتاب Precision Cancer Medicine: Role of the Pathologist به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب پزشکی دقیق سرطان: نقش پاتولوژیست نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب نقش متغیر آسیب شناسی را در کمک به انتخاب مجدد و دقیق بیمار برای درمان سرطان پیش بینی توصیف می کند. توجه ویژه ای به کاربرد بالینی نشانگرهای زیستی پیشرفته سرطان برای انتخاب دقیق بیماران برای درمان هدفمند سرطان و اینکه چگونه هوش مصنوعی می تواند دقت درمان ها را بهبود بخشد، داده شده است. ظهور و اساس مراقبت های پیش بینی کننده سرطان، نقش پاتولوژیست ها در تحقیقات سرطان ترجمه، تجزیه و تحلیل نمونه های سرطان، مدیریت نتایج بیوپسی، و دقت نتایج بیوپسی نیز مورد بحث قرار گرفته است.
پزشکی دقیق سرطان: نقش پاتولوژیست توضیح میدهد که چگونه
آسیبشناسان میتوانند از جدیدترین نشانگرهای زیستی استفاده
کنند و از فناوری هوش مصنوعی در تشخیص و مدیریت سرطان استفاده
کنند. همچنین به انکولوژیست ها و پزشکان درگیر در مدیریت سرطان
که به دنبال منبعی به روز در مورد این موضوع هستند، مرتبط
است.
This book describes the changing role of pathology in aiding reproducible and accurate patient selection for predictive cancer therapy. Particular attention is given to the clinical application of cutting-edge cancer biomarkers to accurately select patients for targeted cancer therapy and how artificial intelligence can improve the precision of treatments. The advent and basis of predictive cancer care, the role of pathologists in translational cancer research, the analysis of cancer samples, the management of biopsy results, and the accuracy of biopsy results are also discussed.
Precision Cancer Medicine: Role of the Pathologist
details how pathologists can use the latest biomarkers and
apply artificial intelligence technology in cancer diagnosis
and management. It is also relevant to oncologists and
medical practitioners involved in cancer management seeking
an up-to-date resource on the topic.
Foreword Preface Contents Part I: The Evolution of Pathology and Precision Medicine 1: Introduction: From ‘Tissue Diagnosis’ to Biomarkers 1.1 A Brief History of Pathology: The Progression to Precision Cancer Medicine 1.1.1 Cure as a Generic Rationale for Cancer Treatment 1.2 The Microscope Invents Pathology and Pathologists 1.3 Seeking a Cure for Non-Symptomatic Early Stage Cancer; Cancer Screening 1.4 Development of Targeted Therapies References 2: The Advent of Biomarker Testing 2.1 Biomarkers in Medicine and Cancer 2.1.1 Biomarkers in Cancer 2.2 Basis of Prediction of Response to Therapy 2.3 Role of Pathology and the Pathologist in the Advent of Precision Cancer Medicine 2.3.1 New Types of Tests: Companion and Complementary Diagnostics 2.3.2 Evolution to Revolution: The Changing Role for Pathology 2.4 The Development Pathway for Targeted Therapeutics and Precision Diagnostics References 3: The Practical Challenges for Pathology: Multiple Rapidly Evolving Methods 3.1 Role in the Development Pathway for Targeted Therapeutics and Precision Diagnostics 3.1.1 Pre-Clinical Research 3.2 Conversion of IHC from a ‘Qualitative’ Stain; to a Quantitative Assay 3.3 ISH and Multiplex Immunofluorescence Methods for Multiple Biomarkers 3.4 FFPE Extraction Based Molecular Methods, PCR, NGS and Proteomics 3.5 Going Digital 3.6 Virtual Biomarkers—Molecular Morphology in the Digital Dimension 3.7 Total Integrative Pathology; the Big Data Problem 3.8 Part I as an entry to Parts II, III & IV References Part II: Precision Medicine Demands Precision Pathology 4: Evolution of the Total Test Approach to Tissue Based Pathological Analysis 4.1 Introduction: The Microscope ‘Invented’ the Pathologist 4.1.1 Re-Invention 4.1.2 Morphology Plus 4.2 IHC: A Stain ‘Repurposed’ as an Assay 4.3 In-Situ Hybridization 4.4 Molecular Extraction Based Methods; Abandoning Morphology? 4.5 Emerging Methods in Microscopy and Microimaging 4.6 The Total Test: Pre-Analytical, Analytical and Post-Analytical Phases (Table 4.3) References 5: Pre-Analytic Phase: Test Selection; Specimen Acquisition and Handling 5.1 The Pre-Analytical Phase Defined 5.2 Test Selection—‘Fit for Purpose’ 5.3 Digital Pre-Analytic Quality 5.4 Turn-Around Time (TAT); Cost; Reimbursement Issues References 6: Pre-Analytic Phase: Specimen Type and Acquisition 6.1 The Specimen 6.2 Excision Biopsy and Surgical Resection 6.3 FNA, Core Needle Biopsy 6.4 Cytologic Preparations 6.5 Liquid Biopsy References 7: Pre-Analytical Phase: Biopsy/Tissue Handling and Processing 7.1 Pre-Analytical Variables (Table 7.1) 7.2 Transport, Warm and Cold Ischemia 7.3 Fixation and Paraffin Embedding (FFPE) 7.3.1 Total Fixation Time 7.3.2 Nature of the Antigen 7.3.3 Fixation Time in Relation to Effectiveness of Different Antibodies 7.3.4 Antigen Retrieval (in Analytic Phase) 7.3.5 Fixation of Tissues Employed for Validation and Controls 7.4 Processing 7.5 Tissue Sectioning and Storage 7.5.1 Sectioning: Thickness 7.5.2 Glass Slides 7.5.3 Section Storage Time: Cut Slide Stability References 8: Analytical Phase: Protocol and Antigen Retrieval 8.1 The Analytical Phase Defined 8.2 Deparaffinization and Optional Blocking Procedures 8.2.1 Blocking Steps 8.3 Antigen Retrieval (AR) or Heat Induced Epitope Retrieval (HIER) References 9: Analytical Phase: Principles for Immunohistochemistry (IHC) 9.1 Reagents and Protocol for Biomarker Labelling; Selection and Validation 9.2 Lab Developed Tests (LDTs)—Manual and Automated 9.2.1 Manual IHC Stains 9.2.2 Automated IHC Stains 9.3 Ready to Use IHC Tests (RTUs) 9.4 Approved IHC Biomarker Assays (FDA, CE Marked) 9.5 Detection Systems and Amplification 9.6 Introduction to Fit for Purpose Controls: Required Characteristics 9.6.1 The Six Required Characteristics of Controls—Reference Standards 9.7 FDA Classification of IHC Tests: Classes I, II and III References 10: Analytical Phase: Current Controls; Fit for Purpose Selection and Validation 10.1 Guides for Selection of Control Materials 10.2 Negative Controls 10.2.1 Negative Reagent Controls (See Table 10.2) 10.2.2 Negative Tissue Controls: External and Internal 10.3 Positive Controls: External and Internal 10.3.1 Positive External Tissue Controls 10.3.2 Positive Internal Tissue Controls 10.4 Tissue Micro-Arrays (TMAs): ‘Sausages’ and Tumor Tissue Banks References 11: Analytical Phase: Alternative and New Control Systems 11.1 Alternative and New Control Systems 11.2 Cell Lines 11.3 Faux or Pseudo-Tissues 11.4 Protein Spots 11.5 Internal Controls and Internal Reference Standards 11.6 Quantifiable Internal Reference Standards (QIRS) 11.7 Quantitative In Situ Proteomics (QISP) References 12: Post-Analytic Phase: Interpretation, Scoring and Reporting of Biopsy Results 12.1 Assessment of Controls 12.2 Sensitivity and Specificity 12.2.1 Positive and Negative Results in Relation to Controls 12.2.2 Sensitivity 12.2.3 Specificity 12.3 Verification and Validation IHC Biomarker Assays 12.3.1 Verification 12.3.2 Validation 12.4 Practical Issues in Validation 12.5 Validation of Pre-Analytical and Analytical Phases: LDTs, RTUs and Approved Biomarker Tests 12.6 Quality Management Systems (QMS): Quality Assurance (QA), Quality Control (QC) 12.6.1 External Quality Assessment and Proficiency Testing References 13: Description and Interpretation of Results; The Pathology Report 13.1 Content and Organization of Report 13.1.1 Descriptive 13.1.2 Integrated and Standardized Reporting 13.2 Scoring; Including Validation of Scoring Method 13.3 Scoring Systems 13.4 Percentage Based Scores 13.4.1 Conversion to Positive and Negative Results 13.4.2 Percentage Combined with Intensity and/or Pattern 13.4.3 Concordance Training 13.4.4 Consensus or Ring Studies 13.5 Addition of Immune Cell Assessment 13.5.1 Immune Scoring; Immunoscore 13.5.2 Composite or Proportion Scores 13.5.3 Field of View (FOV) Selection Errors 13.6 Phenotypic Cell Identification and Scoring: Multiplex Methods 13.7 Digital Computerized Scoring Algorithms References 14: Immunofluorescence, In Situ Hybridization and Alternative Forms of ‘Labeled’ Microscopy 14.1 Labeled Microscopy Methods 14.2 Immunofluorescence—IF 14.3 In Situ Hybridization—ISH 14.4 RNA Scope 14.5 Advanced Multiplex Microscopy and Other Emerging Methods 14.5.1 Brightfield (IHC) Versus Immunofluorescence (IF) Methods 14.5.2 Multiplex Digital IF 14.5.2.1 The Sequential Method 14.5.2.2 The Simultaneous Method 14.6 MIBI Microscopy (Multiplex Ion Beam Imaging) 14.7 Raman Microscopy (Vibrational) Spectroscopy (RMS) 14.8 Part II—Summary References Part III: Role of the Pathologist in Predictive Biomarker Analysis 15: Implementation of Precision Cancer Diagnostic Test 15.1 Introduction to Role of the Pathologist in Predictive Biomarker Analysis 15.2 Implementation of Predictive Biomarker Tests 15.3 Analytical Validation 15.3.1 Repeatability 15.3.2 Intermediate Precision 15.3.3 Role of the Pathologist in Repeatability and Intermediate Studies 15.3.4 Reproducibility 15.3.5 Total Test Reproducibility 15.3.6 Role of the Pathologist in Assay Reproducibility Studies 15.4 Clinical Validation 15.4.1 The Role of the Pathologist 15.5 Clinical Utility 15.5.1 The Role of the Pathologist 15.6 Summary & Future Needs & Trends References 16: Role of Pathologist in Precision Cancer Diagnosis 16.1 Introduction 16.2 Regulatory Body and Expert Opinion Based Recommendations 16.3 Role of Pathologist in Assurance of Good Diagnostic Practice 16.4 Internal Quality Assurance of Pre-Analysis Phase 16.4.1 Potential Errors Due to Inadequate Tissue Preservation 16.4.1.1 Potential Causes of False Negative or Weak Results 16.4.2 Adequacy and Representativeness of Biopsy Material 16.5 Internal Quality Assurance of Analysis Phase 16.5.1 Pre-Analytic Phase Exclusion Factors 16.5.2 Analytic Phase Exclusion Factors 16.5.3 Evaluation of the Quality of Biopsy Material 16.5.4 Evaluation of Distribution and Quantity of Tumour Tissue 16.5.5 Assessment of Quality of Assay Performance 16.5.6 Selection and Use of Control 16.6 Quality Assurance of Post-Analytic Phase 16.6.1 Post Analysis Factors Influencing Quality of Biomarker Assessment 16.6.2 Indication Specific Interpretation, Scoring and Reporting 16.6.3 Assessment of Appropriateness and Completeness of Biomarker Analysis 16.6.4 Evaluation of Accuracy of the Results 16.7 Summary and Future Needs & Trends References 17: Role of Pathologist in Precision Molecular and Digital Image Analyses 17.1 Introduction 17.2 Role of Pathologist in Morpho-Molecular Diagnosis of Cancer 17.3 Role of Pathologist in Molecular Analysis of Cancer 17.4 Role of Pathologist in Guidance of Cancer Molecular Profiling 17.5 Role of Pathologist in Analysis of Tumour Heterogeneity 17.6 Role of Pathologist in Analysis of Tumour Micro-Environment (TME) 17.7 Future Role of Pathologist in Emerging Morpho-Molecular Cancer Diagnostics References Part IV: Digital and Computational Pathology and Their Role in Precision Oncology 18: Introduction to Digital and Computational Pathology References 19: AI in the Pre-Analytical Phase 19.1 The Workflow Design 19.2 Sample and Quality Management 19.3 Quality Control and Validation 19.4 CIS, LIS, DIS and PACS 19.5 Workflow Integration, Connectivity and Interoperability References 20: AI in the Analytical Phase 20.1 Overcoming Variabilities 20.2 Telepathology 20.3 Standardization, Harmonization and Concordance 20.4 Scanning and Whole Slide Imaging 20.5 Image Analysis 20.6 Advanced Microscopy References 21: AI in the Post-Analytical Phase 21.1 Dealing with Complexity 21.2 Artificial Intelligence, Machine Learning and Topology 21.3 Computational Pathology 21.4 The Science of Data or Data Science 21.5 Algebraic Pathology 21.6 Encoded Pathology 21.7 Disease Modelling and Simulation References 22: AI in the Decision Phase 22.1 Examples of Clinical Utility 22.2 Prognosis of Cancer 22.3 Predicting Treatment Outcomes 22.4 Clinical Decision Support Through Applications 22.4.1 Colorectal Cancer 22.4.2 Lung Cancer 22.4.3 Melanocytic Lesions 22.4.4 Lymphoid Aggregates 22.4.5 Bladder Cancer 22.4.6 Renal Biopsies 22.4.7 Breast Cancer 22.4.8 Prostate Cancer 22.4.9 Thyroid Cancer 22.4.10 Cytology 22.4.11 Biobanking 22.5 Opportunity for Discovery of Novel Biomarker References Index