دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Gerald Farin. Dianne Hansford
سری:
ISBN (شابک) : 1568812345, 9781568812342
ناشر: A K Peters/CRC Press
سال نشر: 2004
تعداد صفحات: 400
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 20 مگابایت
در صورت تبدیل فایل کتاب Practical Linear Algebra: A Geometry Toolbox به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب جبر خطی عملی: جعبه ابزار هندسه نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
جبر خطی عملی دانش آموزان در ریاضیات، علوم، مهندسی، و علوم کامپیوتر را با جبر خطی از دیدگاه شهودی و هندسی آشنا می کند و سطحی از درک را ایجاد می کند که بسیار فراتر از دستکاری های ماتریسی است. جنبه های عملی، مانند موضوعات گرافیک کامپیوتری و استراتژی های عددی، در سراسر پوشش داده شده است، و بنابراین دانش آموزان می توانند یک \"جعبه ابزار هندسه\" را بر اساس درک هندسی از مفاهیم کلیدی بسازند. این کتاب تمام مطالب استاندارد جبر خطی را برای یک دوره سال اول پوشش می دهد. نویسندگان به جای استفاده از سبک قضیه/اثبات، با انگیزه، تصویر و مثال تدریس می کنند. ویژگی های ویژه: - نمایش های بصری واضح (بیش از 200 شکل) برای درک بهتر مطالب. - طرحهای طراحی شده با دست، دانشآموزان را تشویق میکند تا در هنگام حل مسائل، طرحهای خود را ایجاد کنند - لایه دیگری از یادگیری را توسعه میدهد. - مثال های متعدد کاربردهایی را برای مشکلات دنیای واقعی نشان می دهد. - مسائل در پایان هر فصل به دانش آموزان اجازه می دهد تا درک خود را از مطالب ارائه شده آزمایش کنند. راه حل هایی برای مشکلات انتخاب شده ارائه شده است. - خلاصه فصل های مختصر مهمترین نکات را برجسته می کند و به دانش آموزان برای رویکرد خود به یادگیری تمرکز می کند. کتابچه راهنمای مربی به زودی در دسترس خواهد بود.
Practical Linear Algebra introduces students in math, science, engineering, and computer science to Linear Algebra from an intuitive and geometric viewpoint, creating a level of understanding that goes far beyond mere matrix manipulations. Practical aspects, such as computer graphics topics and numerical strategies, are covered throughout, and thus students can build a "Geometry Toolbox," based on a geometric understanding of the key concepts. This book covers all the standard linear algebra material for a first-year course; the authors teach by motivation, illustration, and example rather than by using a theorem/proof style. Special Features: - Clear visual representations (more than 200 figures) for improved material comprehension. - Hand-drawn sketches encourage students to create their own sketches when solving problems-developing another layer of learning. - Numerous examples show applications to real-world problems. - Problems at the end of each chapter allow students to test their understanding of the material presented. Solutions to selected problems are provided. - Concise chapter summaries highlight the most important points, giving students focus for their approach to learning. An instructor's manual will be available soon.
Contents......Page 8
Preface......Page 14
1 Descartes\' Discovery......Page 18
1.1 Local and Global Coordinates: 2D......Page 19
1.2 Going from Global to Local......Page 23
1.3 Local and Global Coordinates: 3D......Page 25
1.4 Stepping Outside the Box......Page 26
1.5 Creating Coordinates......Page 27
1.6 Exercises......Page 29
2 Here and There: Points and Vectors in 2D......Page 30
2.1 Points and Vectors......Page 31
2.2 What\'s the Difference......Page 33
2.3 Vector Fields......Page 34
2.4 Length of a Vector......Page 35
2.5 Combining Points......Page 38
2.6 Independence......Page 41
2.7 Dot Product......Page 42
2.8 Orthogonal Projections......Page 46
2.9 Inequalities......Page 47
2.10 Exercises......Page 48
3 Lining Up: 2D Lines......Page 50
3.1 Defining a Line......Page 51
3.2 Parametric Equation of a Line......Page 52
3.3 Implicit Equation of a Line......Page 54
3.4 Explicit Equation of a Line......Page 57
3.5 Converting Between Parametric and Implicit Equations......Page 58
3.6 Distance of a Point to a Line......Page 60
3.7 The Foot of a Point......Page 64
3.8 A Meeting Place: Computing Intersections......Page 65
3.9 Exercises......Page 71
4 Changing Shapes: Linear Maps in 2D......Page 74
4.1 Skew Target Boxes......Page 75
4.2 The Matrix Form......Page 76
4.3 More about Matrices......Page 78
4.4 Scalings......Page 80
4.5 Reflections......Page 82
4.6 Rotations......Page 85
4.7 Shears......Page 86
4.8 Projections......Page 88
4.9 The Kernel of a Projection......Page 90
4.10 Areas and Linear Maps: Determinants......Page 91
4.11 Composing Linear Maps......Page 94
4.12 More on Matrix Multiplication......Page 98
4.13 Working with Matrices......Page 100
4.14 Exercises......Page 101
5 $2 x 2$ Linear Systems......Page 104
5.1 Skew Target Boxes Revisited......Page 105
5.2 The Matrix Form......Page 106
5.3 A Direct Approach: Cramer\'s Rule......Page 107
5.4 Gaussian Elimination......Page 108
5.5 Undoing Maps: Inverse Matrices......Page 110
5.6 Unsolvable Systems......Page 116
5.8 Homogeneous Systems......Page 117
5.9 Numerical Strategies: Pivoting......Page 119
5.11 Exercises......Page 121
6 Moving Things Around: Affine Maps in 2D......Page 124
6.1 Coordinate Transformations......Page 125
6.2 Affine and Linear Maps......Page 127
6.3 Translations......Page 128
6.4 More General Affine Maps......Page 129
6.5 Mapping Triangles to Triangles......Page 131
6.6 Composing Affine Maps......Page 133
6.7 Exercises......Page 137
7 Eigen Things......Page 140
7.1 Fixed Directions......Page 141
7.2 Eigenvalues......Page 142
7.3 Eigenvectors......Page 144
7.4 Special Cases......Page 146
7.5 The Geometry of Symmetric Matrices......Page 149
7.6 Repeating Maps......Page 152
7.7 The Condition of a Map......Page 154
7.8 Exercises......Page 155
8 Breaking It Up: Triangles......Page 158
8.1 Barycentric Coordinates......Page 159
8.2 Affine Invariance......Page 161
8.3 Some Special Points......Page 162
8.4 2D Triangulations......Page 165
8.5 A Data Structure......Page 166
8.6 Point Location......Page 167
8.7 3D Triangulations......Page 168
8.8 Exercises......Page 170
9 Conics......Page 172
9.1 The General Conic......Page 173
9.2 Analyzing Conics......Page 177
9.3 The Position of a Conic......Page 179
9.4 Exercises......Page 180
10 3D Geometry......Page 182
10.1 From 2D to 3D......Page 183
10.2 Cross Product......Page 185
10.3 Lines......Page 189
10.4 Planes......Page 190
10.5 Application: Lighting and Shading......Page 194
10.6 Scalar Triple Product......Page 197
10.7 Linear Spaces......Page 198
10.8 Exercises......Page 200
11 Interactions in 3D......Page 202
11.1 Distance Between a Point and a Plane......Page 203
11.2 Distance Between Two Lines......Page 204
11.3 Lines and Planes: Intersections......Page 206
11.5 Lines and Planes: Reflections......Page 208
11.6 Intersecting Three Planes......Page 210
11.7 Intersecting Two Planes......Page 211
11.8 Creating Orthonormal Coordinate Systems......Page 212
11.9 Exercises......Page 214
12 Linear Maps in 3D......Page 216
12.1 Matrices and Linear Maps......Page 217
12.2 Scalings......Page 219
12.4 Shears......Page 221
12.5 Projections......Page 224
12.6 Rotations......Page 226
12.7 Volumes and Linear Maps: Determinants......Page 230
12.8 Combining Linear Maps......Page 233
12.9 More on Matrices......Page 235
12.10 Inverse Matrices......Page 236
12.11 Exercises......Page 238
13 Affine Maps in 3D......Page 240
13.1 Affine Maps......Page 241
13.3 Mapping Tetrahedra......Page 242
13.4 Projections......Page 246
13.5 Homogeneous Coordinates and Perspective Maps......Page 249
13.6 Exercises......Page 255
14 General Linear Systems......Page 258
14.1 The Problem......Page 259
14.2 The Solution via Gauss Elimination......Page 261
14.3 Determinants......Page 267
14.4 Overdetermined Systems......Page 270
14.5 Inverse Matrices......Page 273
14.6 LU Decomposition......Page 275
14.7 Exercises......Page 279
15 General Linear Spaces......Page 282
15.1 Basic Properties......Page 283
15.2 Linear Maps......Page 285
15.4 Gram-Schmidt Orthonormalization......Page 288
15.5 Higher Dimensional Eigen Things......Page 289
15.6 A Gallery of Spaces......Page 291
15.7 Exercises......Page 293
16 Numerical Methods......Page 296
16.1 Another Linear System Solver: The Householder Method......Page 297
16.2 Vector Norms and Sequences......Page 302
16.3 Iterative System Solvers: Gauss-Jacobi and Gauss-Seidel......Page 304
16.4 Finding Eigenvalues: the Power Method......Page 307
16.5 Exercises......Page 311
17 Putting Lines Together: Polylines and Polygons......Page 314
17.1 Polylines......Page 315
17.2 Polygons......Page 316
17.3 Convexity......Page 317
17.4 Types of Polygons......Page 318
17.5 Unusual Polygons......Page 319
17.6 during Angles and Winding Numbers......Page 321
17.7 Area......Page 322
17.8 Planarity Test......Page 326
17.9 Inside or Outside......Page 327
17.10 Exercises......Page 330
18 Curves......Page 332
18.1 Application: Parametric Curves......Page 333
18.2 Properties of Bezier Curves......Page 338
18.3 The Matrix Form......Page 340
18.4 Derivatives......Page 341
18.5 Composite Curves......Page 343
18.6 The Geometry of Planar Curves......Page 344
18.7 Moving along a Curve......Page 346
18.8 Exercises......Page 348
A.l A Warm-Up Example......Page 350
A.2 Overview......Page 353
A.3 Affine Maps......Page 355
A.4 Variables......Page 356
A.5 Loops......Page 357
A.6 CTM......Page 358
Appendix B Selected Problem Solutions......Page 360
Glossary......Page 384
Bibliography......Page 388