دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Valeri Manokhin
سری:
ISBN (شابک) : 9781805122760
ناشر: Packt
سال نشر: 2024
تعداد صفحات: 240
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 6 Mb
در صورت تبدیل فایل کتاب Practical Guide to Applied Conformal Prediction in Python به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب راهنمای عملی پیشبینی منسجم کاربردی در پایتون نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
با «راهنمای عملی پیشبینی منسجم کاربردی در پایتون»، قدرت پیشبینی منسجم را کشف کنید.
Discover the power of Conformal Prediction with the \"Practical Guide to Applied Conformal Prediction in Python.\"
Cover Title Page Copyright and Credits Foreword Contributors Table of Contents Preface Part 1: Introduction Chapter 1: Introducing Conformal Prediction Technical requirements Introduction to conformal prediction Understanding conformity measures The origins of conformal prediction The future of conformal prediction How conformal prediction differs from traditional machine learning The p-value and its role in conformal prediction Summary Chapter 2: Overview of Conformal Prediction Understanding uncertainty quantification Aleatoric uncertainty Epistemic uncertainty Different ways to quantify uncertainty Quantifying uncertainty using conformal prediction Summary Part 2: Conformal Prediction Framework Chapter 3: Fundamentals of Conformal Prediction Fundamentals of conformal prediction Definition and principles Basic components of a conformal predictor Types of nonconformity measures Summary Chapter 4: Validity and Efficiency of Conformal Prediction The validity of probabilistic predictors Classifier calibration The efficiency of probabilistic predictors Summary Chapter 5: Types of Conformal Predictors Understanding classical predictors Applying TCP for classification problems Applying TCP for regression problems Advantages Understanding inductive conformal predictors Choosing the right conformal predictor Transductive conformal predictors Inductive conformal predictors Summary Part 3: Applications of Conformal Prediction Chapter 6: Conformal Prediction for Classification Classifier calibration Understanding the concepts of classifier calibration Evaluating calibration performance Various approaches to classifier calibration Histogram binning Platt scaling Isotonic regression Conformal prediction for classifier calibration Venn-ABERS conformal prediction Comparing calibration methods Open source tools for conformal prediction in classification problems Nonconformist Summary Chapter 7: Conformal Prediction for Regression Uncertainty quantification for regression problems Understanding the types and sources of uncertainty in regression modeling The concept of prediction intervals Why do we need prediction intervals? How is it different from a confidence interval? Conformal prediction for regression problems Building prediction intervals and predictive distributions using conformal prediction Mechanics of CQR Quantile regression CQR Jackknife+ Jackknife regression Jackknife+ regression Conformal predictive distributions Summary Chapter 8: Conformal Prediction for Time Series and Forecasting UQ for time series and forecasting problems The importance of UQ The history of UQ Early statistical methods – the roots of UQ in time series Modern machine learning approaches The concept of PIs in forecasting applications Definition and construction The importance of forecasting applications Challenges and considerations Various approaches to producing PIs Parametric approaches Non-parametric approaches Bayesian approaches Machine learning approaches Conformal prediction Conformal prediction for time series and forecasting Ensemble batch PIs (EnbPIs) NeuralProphet Summary Chapter 9: Conformal Prediction for Computer Vision Uncertainty quantification for computer vision Why does uncertainty matter? Types of uncertainty in computer vision Quantifying uncertainty Why does deep learning produce miscalibrated predictions? Post-2012 – the deep learning surge The "calibration crisis" in deep learning – a turning point in 2017 Overconfidence in modern deep learning computer vision models Various approaches to quantify uncertainty in computer vision problems The superiority of conformal prediction in uncertainty quantification Conformal prediction for computer vision Uncertainty sets for image classifiers using conformal prediction Building computer vision classifiers using conformal prediction Naïve Conformal prediction Adaptive Prediction Sets (APS) Regularized Adaptive Prediction Sets (RAPS) Summary Chapter 10: Conformal Prediction for Natural Language Processing Uncertainty quantification for NLP What is uncertainty in NLP? Benefits of quantifying uncertainty in NLP The challenges of uncertainty in NLP Understanding why deep learning produces miscalibrated predictions Introduction to deep learning in NLP Challenges with deep learning predictions in NLP The implications of miscalibration Various approaches to quantify uncertainty in NLP problems Bootstrap methods and ensemble techniques Out-of-distribution (OOD) detection Conformal prediction for NLP How conformal prediction works in NLP Practical applications of conformal prediction in NLP Advantages of using conformal prediction in NLP Summary Part 4: Advanced Topics Chapter 11: Handling Imbalanced Data Introducing imbalanced data Why imbalanced data problems are complex to solve Methods for solving imbalanced data The methods for solving imbalanced data Solving imbalanced data problems by applying conformal prediction Addressing imbalanced data with Venn-Abers predictors Key insights from the Credit Card Fraud Detection notebook Summary Chapter 12: Multi-Class Conformal Prediction Multi-class classification problems Algorithms for multi-class classification One-vs-all and one-vs-one strategies Metrics for multi-class classification problems Confusion matrix Precision Recall F1 score Macro- and micro-averaged metrics Area Under Curve (AUC-ROC) Log loss and its application in measuring calibration of multi-class models Brier score and its application in measuring the calibration of multi-class models How conformal prediction can be applied to multi-class classification problems Multi-class probabilistic classification using inductive and cross-Venn-ABERS predictors Summary Index Other Books You May Enjoy