ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Practical Fairness

دانلود کتاب انصاف عملی

Practical Fairness

مشخصات کتاب

Practical Fairness

ویرایش:  
نویسندگان:   
سری:  
ISBN (شابک) : 9781492075738 
ناشر: O'Reilly Media, Inc. 
سال نشر: 2020 
تعداد صفحات:  
زبان: English 
فرمت فایل : EPUB (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 4 Mb 

قیمت کتاب (تومان) : 52,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 2


در صورت تبدیل فایل کتاب Practical Fairness به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب انصاف عملی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی درمورد کتاب به خارجی



فهرست مطالب

Copyright
Table of Contents
Preface
	Goals of This Book
	Practical Notes on the Book
	Conventions Used in This Book
	Using Code Examples
	O’Reilly Online Learning
	How to Contact Us
	Acknowledgments
Chapter 1. Fairness, Technology, and the Real World
	Fairness in Engineering Is an Old Problem
	Our Fairness Problems Now
		Community Norms
		Equity and Equality
		Security
		Privacy
	Legal Responses to Fairness in Technology
	The Assumptions and Approaches in This Book
	What If I’m Skeptical of All This Fairness Talk?
		Won’t Fairness Slow Down Innovation?
		Are There Any Real-World Consequences for Not Developing Fairness-Aware Practices?
	What Is Fairness?
	Rules to Code By
		Equality and Equity
		Security
		Privacy
Chapter 2. Understanding Fairness and the Data Science Pipeline
	Metrics for Fairness
		Measures of Equity
		Measures of Privacy
		Measures of Security
	Connected Concepts
		Privacy and Security
		Privacy and Equity
		Equality and Security
		Accuracy and Fairness
	Automated Fairness?
	Checklist of Points of Entry for Fairness in the Data Science Pipeline
		Assembling a Data Set
		Modeling
		Interface
	Concluding Remarks
Chapter 3. Fair Data
	Ensuring Data Integrity
		True Measurements
		Proportionality and Sampling Technique
	Choosing Appropriate Data
		Equity
		Privacy
		Security
	Case Study: Choosing the Right Question for a Data Set and the Right Data Set for a Question
	Quality Assurance for a Data Set: Identifying Potential Discrimination
	A Timeline for Fairness Interventions
	Comprehensive Data-Acquisition Checklist
	Concluding Remarks
Chapter 4. Fairness Pre-Processing
	Simple Pre-Processing Methods
	Suppression: The Baseline
	Massaging the Data Set: Relabeling
	AIF360 Pipeline
		Loading the Data
		Fairness Metrics
	The US Census Data Set
	Suppression
	Reweighting
		How It Works
		Code Demonstration
	Learning Fair Representations
		How It Works
		Code Demonstration
	Optimized Data Transformations
		How It Works
		Code Demonstration
	Fairness Pre-Processing Checklist
	Concluding Remarks
Chapter 5. Fairness In-Processing
	The Basic Idea
	The Medical Data Set
	Prejudice Remover
		How It Works
		Code Demonstration
	Adversarial Debiasing
		How It Works
		Code Demonstration
	In-Processing Beyond Antidiscrimination
	Model Selection
	Concluding Remarks
Chapter 6. Fairness Post-Processing
	Post-Processing Versus Black-Box Auditing
	The Data Set
	Equality of Opportunity
		How It Works
		Code Demonstration
	Calibration-Preserving Equalized Odds
		How It Works
		Code Demonstration
	Concluding Remarks
Chapter 7. Model Auditing for Fairness and Discrimination
	The Parameters of an Audit
	Scoping: What Should We Audit?
	Black-Box Auditing
		Running a Model Through Different Counterfactuals
		Model of the Model
		Auditing Black-Box Models for Indirect Influence
	Concluding Remarks
Chapter 8. Interpretable Models and Explainability Algorithms
	Interpretation Versus Explanation
	Interpretable Models
		GLRM: How It Works
		Code Demonstration
	Explainability Methods
		SHAP and LIME: The Workhorses for Local Post Hoc Explanations
		Data-Driven Explanation
		Explainability Metrics
	What Interpretation and Explainability Miss
		Attacks on Explainable Machine Learning
	Interpretation and Explanation Checklist
	Concluding Remarks
Chapter 9. ML Models and Privacy
	Membership Attacks
		How It Works
		Code Demonstration
	Other Privacy Problems and Attacks
	Important Privacy Techniques
	Concluding Remarks
Chapter 10. ML Models and Security
	Evasion Attacks
		How It Works
		Code Demonstration
		Defending Against Adversarial Attacks
		Some Evasion Attack Packages
		Why Do Evasion Attacks Matter to You?
	Poisoning Attacks
		How They Work
		Defenses Against Poisoning Attacks
		Some Poisoning Attack Packages
		Why Do Poisoning Attacks Matter to You?
	Concluding Remarks
Chapter 11. Fair Product Design and Deployment
	Reasonable Expectations
		Expectations of Moving Targets
		Clear Communication
	Fiduciary Obligations
	Respecting Traditional Spheres of Privacy and Private Life
	Value Creation
	Complex Systems
		The Impact of the Product Life Cycle
		The Need for Record Keeping
		The Need for Experts
	Clear Security Promises and Delineated Limitations
		Reasonable Expectations of Security
	Possibility of Downstream Control and Verification
		Verification Systems and Obligations
		Product Iteration Timelines
		Tracking Downstream Users
	Products That Work Better for Privileged People
	Dark Patterns
	Fair Products Checklist
	Concluding Remarks
Chapter 12. Laws for Machine Learning
	Personal Data
		GDPR
		California Consumer Privacy Act
		Data Broker Laws
	Algorithmic Decision Making
		GDPR
		Proposed US Laws for Algorithms
	Security
		HIPAA
		FTC Guidance on Cybersecurity
		Tort Law
	Logical Processes
		Right to an Explanation
		Freedom of Information Laws
		Due Process
	Some Application-Specific Laws
		Biometrics
		Local Ordinances on Facial Recognition
		Chat Bots
	Concluding Remarks
Index
About the Author
Colophon




نظرات کاربران