دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Rubén Molina Llorente
سری:
ISBN (شابک) : 3030347575, 9783030347574
ناشر: Springer
سال نشر: 2020
تعداد صفحات: 643
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 36 مگابایت
در صورت تبدیل فایل کتاب Practical Control of Electric Machines: Model-Based Design and Simulation (Advances in Industrial Control) به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب کنترل عملی ماشین های الکتریکی: طراحی و شبیه سازی مبتنی بر مدل (پیشرفت در کنترل صنعتی) نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Series Editor’s Foreword Preface Trademark Acknowledgements Contents 1 Embedded Control System Development Process: Model-Based Design and Architecture Basics 1.1 Introduction 1.2 Model-Based Design 1.2.1 V-Model 1.2.2 Test Stage 1.2.3 MBD Process 1.3 Computer Simulations 1.3.1 MATLAB/Simulink 1.3.2 PSIM® 1.3.3 Finite Element in Electric Machines 1.4 Software Architecture Patterns 1.4.1 Introduction 1.4.2 Automotive Open System Architecture (AUTOSAR) 1.5 Discrete-Time Electric Machine Control System Overview References 2 Electric Machine Control Technics 2.1 Control Theory Overview 2.1.1 Stability Analysis of Second-Order Systems 2.2 Control Structures 2.2.1 Feedforward Control 2.2.2 Cascade Control Structure 2.3 Classical PID Controllers 2.3.1 PD Controller 2.3.2 PI Controller 2.3.3 PID Controller 2.3.4 Anti-windup 2.4 Digital Control 2.4.1 Aliasing 2.4.2 Quantifier 2.4.3 Time Delays 2.4.4 Integrators 2.4.5 Derivative 2.5 Digital PID Implementation 2.5.1 Discrete PI 2.5.2 Digital PI Implementation 2.6 Fuzzy Logic as Controllers 2.6.1 Overview 2.6.2 Fuzzy Logic System 2.6.3 Fuzzy Logic Control 2.6.4 Adaptive Fuzzy PI 2.6.5 Fuzzy + PI References 3 Three-Phase Electrical Systems 3.1 Introduction 3.2 Three-Phase Balanced Linear Load 3.2.1 Star (Wye) Connection 3.2.2 Delta Connection 3.2.3 Low- and High-Voltage AC Machine Connection 3.3 Power in Three-Phase Systems 3.4 Vector Representation in Three-Phase Systems 3.5 Mathematical Transformation for AC Machine Analysis 3.5.1 The Clarke and Concordia Transformation 3.5.2 The Rotation Transformation 3.6 Instantaneous Power in Three-Phase Systems 3.6.1 Instantaneous Power Computation 3.7 RMS Computation References 4 Fundamentals of Electric Machines 4.1 Introduction 4.2 Electric Machine Classification 4.3 Brushed Machine 4.3.1 Universal Machine 4.3.2 Self-Excited and Separately Excited Torque Expression 4.3.3 Brushed Machine Operation 4.4 Three-Phase Brushless AC Machine 4.4.1 AC Induction Machine 4.4.2 PMAC and BLDC Machine 4.4.3 Synchronous Reluctance Machine References 5 Modeling Electric Machines 5.1 Mechanical Motion Model (Newton’s Laws of Motion) 5.2 State-Space Overview 5.3 Modeling DC Machine 5.3.1 Continuous State-Space 5.4 Three-Phase Brushless AC Machine Model 5.4.1 Induction Machine 5.4.2 PMAC Machine References 6 Measurement in Electric Drives 6.1 Introduction 6.2 Voltage Measurement 6.2.1 Non-isolated Voltage Measurement 6.2.2 Adding a Low-Pass Filter (LPF) 6.3 Temperature Measurement 6.3.1 The Thermistor for Temperature Measurement 6.4 Current Measurement 6.4.1 Non-isolated Current Measurement 6.4.2 Isolated Current Measurement 6.5 Speed Measurement 6.5.1 Tachometer Sensor 6.5.2 Speed/Position Measurement 7 Microcontroller Peripherals for Electric Drives 7.1 General Timer Module (GTM) 7.1.1 GTM Sub-modules 7.2 Analog-to-Digital Converter 7.2.1 Successive Approximation A/D Converter 7.2.2 Delta-Sigma Converter 7.3 Infineon AURIX™ Automotive Microcontroller 7.3.1 Introduction 7.3.2 Infineon AURIX™ Family 7.3.3 GTM in AURIX™ Family 7.3.4 DSADC in AURIX™ Family 7.4 General-Purpose Renesas RX600 Microcontroller 7.4.1 Multi-function Timer Pulse Unit 3 (MTU3) 7.4.2 A/D Converter 7.5 Modeling and Simulation 7.5.1 Modeling and Simulation of ATOM 7.5.2 ATOM Configuration 7.5.3 Simulation of SDADC 7.5.4 Simulation of MTU for Three-Phase Machines 7.5.5 MTU3-4 PWM Configuration 7.5.6 MTU5 Configuration 7.5.7 Simulation of A/D Converter 7.5.8 A/D Configuration for Three-Phase Machines References 8 Analysis of Three-Phase Voltage-Source Inverters 8.1 Introduction 8.2 VSI 8.2.1 Single-Phase VSI 8.2.2 Three-Phase VSI 8.3 Power Semiconductor 8.3.1 Introduction 8.3.2 Semiconductor Technology Overview 8.3.3 Parasitic Effect in Semiconductor Switches 8.3.4 Gate Charge 8.3.5 Dynamic Characteristic 8.3.6 Snubber Circuits 8.3.7 Semiconductor Power Losses 8.4 VSI Design Considerations 8.4.1 Gate Driver 8.4.2 Current Measurement 8.4.3 Output Voltage Distortion 8.4.4 DC Voltage Source 8.4.5 DC-Link Pre-charge 8.4.6 DC-Link Discharge 8.5 VSI in Dynamic and Regenerative Braking Mode 8.6 Machine Terminal Overvoltage 8.6.1 Involved Impedance 8.6.2 Sine-Wave Low-Frequency Output Filter 8.6.3 High-Frequency Output Filter 8.6.4 dv/dt Simulation 8.7 VSI Self-protection 8.7.1 Short-Circuit Protection (Surge Current Detection) 8.7.2 Overcurrent Detection 8.7.3 Overvoltage and Undervoltage Detection 8.7.4 Overheating Detection 8.8 Machine Fault Detection 8.8.1 Locked Rotor Detection 8.8.2 Overload Detection 8.8.3 Overheating Detection 8.8.4 Open-Phase Detection 8.9 VSI Power Plant Model References 9 Space Vector Modulation 9.1 Space Vector Modulation 9.1.1 Introduction 9.1.2 Space Vector Modulation 9.2 Model Design 9.2.1 Introduction 9.2.2 SVPWM Model 9.2.3 Deadtime Compensation Model 9.2.4 Simulation Results 9.3 Experimental Results 9.3.1 Continuous SVPWM 9.3.2 Discontinuous SVPWM 9.3.3 Distortion Effect in the AC Current 9.3.4 Semiconductor Temperature Effect 9.3.5 Deadtime Compensation References 10 Practical Control of AC Machine 10.1 Introduction 10.2 Control Overview in an Electrical Machines 10.2.1 Rotating Load Speed Control Design 10.2.2 PI Current Control Design 10.2.3 DC Servo Motor Drive Model-Based Simulation 10.3 Principle of Vector Control 10.4 Sensored Vector Control 10.4.1 Induction Machine 10.4.2 SynRM/PMASynRM 10.4.3 PMSM 10.5 Flux Weakening Control 10.5.1 Flux Weakening Control of Induction Machine 10.5.2 Flux Weakening Control of SynRM and PMASynRM 10.5.3 Flux Weakening Control Strategy 10.6 Sensorless Control 10.6.1 Introduction 10.6.2 Rotor Flux Linkage Estimator in IM, PMSM, SynRM, and PMASynRM 10.6.3 Rotor Flux Linkage Estimator PMSM 10.6.4 Instantaneous Slip and Speed Estimator for IM 10.7 Simulations Results 10.7.1 Flux Observer and Slip Estimator Simulations in IM 10.7.2 Flux Observer in PMSM References 11 Model-in-the-Loop Development in a Vector Control of Induction Machine 11.1 Introduction 11.2 Control Loop Analysis 11.3 Rapid Prototype Simulation Without Power Plant 11.4 Software Architecture Design 11.5 MCL SWC Design 11.5.1 Slow Control Loop Task 11.5.2 Fast Control Loop Task 11.5.3 MCL Unit Test 11.6 Model-in-the-Loop Test (MiL) 11.6.1 Test Below Nominal Speed 11.6.2 Test Above Nominal Speed 11.7 Application in Electrical Vehicle 11.7.1 Vehicle Movement Simulation 11.7.2 Vehicle Speed Control Simulation 11.8 Application in Propeller Aircraft References 12 Appendices 12.1 Real-Time Implementation: PiL Testing 12.2 55 kW IPMSM Simulation Results 12.2.1 Static Simulation 12.2.2 Motor Mode 12.2.3 Generator Mode References Index